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Abstract 
 

Over oil and gas fields exploration and development phases, one of the main challenges of 

geoscientists and petroleum engineers is the petrophysical characterization of potential or 

discovered fields or reservoirs. Well logs data play key roles in wells stratigraphic column 

establishment and the computation of reservoir formations petrophysical parameters. Due to 

the conditions and the environment of well log data acquisition, they undergo some technical 

processing. For gamma ray log data for instance, although the technical data processing, the 

representative minimum and maximum values of recorded GR are required for unbiased 

qualitative and quantitative analyses. This study aims to propose statistical techniques for 

gamma ray logs data processing that will contribute to the reduction of biases related to their 

qualitative and quantitative analyses. A case study has been performed on a Gulf of Guinea’s 

offshore well gamma ray log data. The results show that the difference between the maximum 

and minimum values for the semi-processed data is almost twice the one of the processed data, 

what will lead to the underestimation of formations shale volumes and therefore to the 

overestimation of reservoirs effective porosity and flow performance. Moreover, the baselines 

(shaly sand, sandy shale and shale baselines) obtained from the semi-processed data are 

respectively located more rightward to those from the processed data. The main consequence 

is that the semi-processed data analysis has hidden the shaliness of formations comparatively 

to the processed data analysis. A comparative analysis shows that the semi-processed data 

analysis has globally underestimated the thickness of thicker formations and underestimate the 

shale volumes of thicker formations and those for which the estimated thicknesses from both 

analyses are the same or close to each other. In summary, the statistical processing of gamma 

ray log data prevents from the underestimation of thicker formations thicknesses and 

formations shale volumes. The main practical advantage is that it will prevent geologists, petro-

physicists and reservoir engineers from the overestimation of oil or gas reservoirs effective 

porosity and flow performance and therefore from the overestimation of oil or gas initially in 

place and reserves. 

 

Keywords: Well log, Gamma ray log data, Statistical processing, Gulf of Guinea. 

 

1. Introduction 

 

Over oil and gas fields exploration and 

development phases, geoscientists and petroleum 

engineers have to characterize the potential or 

discovered fields or reservoirs. One of the main 

reservoir characterizations is the petrophysical 

characterization of reservoir formations through 

direct and indirect methods (Djoï, Nwosu and 

Ikiensikimama, 2022). The indirect methods use 

information recorded on the reservoir from surface 

or by lowering tools in wellbores. Well logs data 

play key role in the reservoir characterization 

through indirect techniques. The common 

petrophysical parameters of reservoir formations 

computed from well log data are, but not limited to, 

shale volume, porosity, permeability, fluids (water, 

oil and gas) saturation, reservoirs net pay thickness, 

fluids contacts (WOC and GOC), the skin effect and 

reservoir pressure (Ekwere, 2004). Qualitative 

analysis can also be performed with well log data to 

identify reservoirs and determine their lithologies as 
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well as those of the overburden formations thereof 

(Djoï, 2012). After recording well logs information, 

some technical processing is performed by the 

logging engineers to eliminate errors related to 

measurement environments, measurement 

conditions (environmental, borehole geometry, 

formation temperature, etc.) and tools response 

limitations (Schlumberger, 2004). Apart from 

technical processing, statistical processing is 

required for some parameters log data unbiased 

analysis. Indeed, for instance, for formations shale 

volume estimation with spontaneous potential (SP) 

or gamma ray (GR) logs, one needs to determine the 

spontaneous potential and gamma ray minimum and 

maximum values (HLS Asia Limited, 2007; Szabó, 

2011). Their misevaluation can lead, among others, 

to an overestimation of reservoir formations shale 

volume and underestimation of formation effective 

porosities. Moreover, misevaluations of shale 

volumes render biased the oil and gas reservoirs 

identification (Djoï, 2015). Indeed, when 

formations shale volumes are overestimated, the 

reservoir layers considered as high shaly formations 

would be rejected wrongly. The experience of well 

logs data analysis has shown that for shale volume 

computation with spontaneous potential or gamma 

ray for instance, statistical processing of 

spontaneous potential and gamma logs data is 

required for a good qualitative and quantitative 

analysis. 

This study aims to propose statistical 

techniques for gamma ray (GR) logs data 

processing that will contribute to the reduction of 

biases related to their qualitative and quantitative 

analyses. 

A case study will be performed on gamma ray 

logs data of wells located in the Gulf of Guinea for 

wells stratigraphic columns determination and 

reservoir formations shale volume computations. 

This case study will show the impact of statistical 

processing on the data analyses results. 

 

1.1. Logging and Gamma Ray Log Data 

Acquisition and Processing 

 

Log in the oil industry means a recording 

against depth of any of the characteristics of the 

underground rock formations traversed by a 

measuring apparatus in the well-bore (Oberto, 

1984). The underground rock formations 

characteristics measurement can be performed 

while drilling wells or after cessation or the end of 

the drilling operations. Base on that, two wide types 

of loggings exist: logging while drilling (LWD) also 

called measurement while drilling (MWD) and 

wireline logging. The while-drilling logs are 

recorded during the drilling operations. They are 

mainly used for drilling control parameters (rotation 

rate, weight on bit, drilling-rate, mud-loss, torque, 

etc.) measurement (Maget, 1990 and Chapelier, 

2004). Wireline logging is performed after an 

interruption (or the termination) of drilling activity, 

and is thus distinguished from drilling-logs (of such 

things as drilling-rate, mud-loss, torque, etc.) and 

mud-logs (drilling mud salinity, pH, mud-weight, 

etc.) obtained during drilling operations (HLS Asia 

Limited, 2007).  

Logging can be carried out in open or cased 

holes. According to Oberto (1984), well-logs are 

important (useful) for the following reasons: 

- core data are difficult or expensive to obtain 

for some parameters (such as natural gamma-

ray radiation, neutron hydrogen index, sonic 

transit time, bulk density, etc.) measurements; 

- well-log data allow an analysis of a larger 

volume of formation than the core, especially 

when we consider that core measurements are 

themselves made on thin sections or plugs of 

material; 

- well-log data offer the possibility of making a 

computer analysis of quantitative data more 

than core data; 

- well-log information is continuous and 

permanent. 

 

The first well-log, a measurement of electrical 

resistivity, devised by Marcel and Conrad 

Schlumberger, was run in September 1927 in 

Pechelbronn, France (Schlumberger, 2004 and 

Bateman, 2020). Log measurements are made using 

a measuring sonde (with electronic cartridge) 

lowered on a cable from a winch, which is mounted 

on a logging truck or offshore unit (Oberto, 1984). 

The truck and unit are laboratories containing the 

recording equipment (optical and tape), control 

panels, and perhaps a computer.  

Tens of logs are developed and used. There 

are, among others, spontaneous potential logs, 

electric logs, induction logs, resistivity logs, caliper 

logs, gamma ray logs, neutron logs, density logs, 

acoustic logs, directional surveys and nuclear 

magnetism logs (Oberto, 1984 and Schlumberger, 

2009). This study will focus on gamma ray logs. 
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1.1.1. Gamma Ray Log Data Acquisition 

 

The gamma ray (GR) log is a continuous 

recording of the intensity of the natural radiations 

emanating from the formations penetrated by the 

borehole versus depth (Oberto, 1984 and Bassiouni, 

1994). The sources of natural radioactivity are the 

isotopes of potassium (40K), thorium (232Th) and 

uranium (238U) contained in the formation minerals 

(Bassiouni, 1994). There are two types of natural 

gamma ray (NG) log. One, the total or standard GR 

log, measures only the total radioactivity. The other, 

the NGS (Natural Gamma Ray Spectrometry) log, 

measures the total radioactivity and the 

concentrations of potassium, thorium, and uranium 

producing the radioactivity (Baron, Cariou and 

Thorion, 1989 and Schlumberger, 2004). Asquith 

and Krygowski (2004) added that the spectral 

gamma ray log records not only the number of 

gamma ray emitted but by the formation but the 

energy of each, and processes that information into 

the curves representative of the amount of 

potassium, thorium and uranium present in the 

formation. Bateman (2020) highlighted that the first 

standard and spectral gamma ray log tools were 

developed and run in 1938 and 1969 respectively.  

As far as GR is concerned, it is measured with 

a radiation counter placed in a sonde (Baron, Cariou 

and Thorion, 1989). The measurement is not stable, 

knowing that the emission phenomenon is variable 

over time. Only an average intensity is measured 

over a long time. Based on that, GR log is a very 

long operation and the recording presents statistical 

fluctuations. According to Oberto (1984) the GAPI 

unit used corresponds to microgram equivalent of 

uranium per tons (µg Raeq/t): the conversion 

relationship is 16.5 GAPI = 1 µg Ra-eq/t). For 

Maget (1990) and Bassiouni (1994), one API 

gamma ray unit is defined as 1/200 of the difference 

in log deflection between the two lower concrete 

zones of low and high radiation in the calibration 

unit. All gamma ray tools are calibrated to API 

standards record gamma ray radiation in the same 

unit of measurement. 

For Djoï, Nwosu and Ikiensikimama (2022), 

the intensity of radiations from potassium are much 

more important than thorium and uranium and is 

characteristic of clay presence in formations. 

Thorium are present in two main types of 

sedimentary rocks (salt or anhydrite and limestone) 

while sandstone are wealthy in uranium (Djoï, 

2012). As a result, high values of GR indicate the 

presence of shale and lower values characterize 

formations with less clay content. Indeed, GR value 

is related to the amount of radioactive items in the 

formation. 

 

1.1.2. Gamma Ray Log Data Processing 

 

As highlighted by Oberto (1984), although we 

would like logs to be direct measurements of the 

formation, log responses are invariably affected by 

the presence of the well-bore (presence of casing 

and cement), certain near-hole phenomena 

associated with the drilling of the well (presence of 

drilling mud invasion and mud cake), the logging 

procedure (speed) and the geometry of the logging 

tool itself. Operational problems may be posed by 

temperature and pressure in the well. Rabaute 

(2009) added that log measurements are carried out 

in difficult or at least less optimal conditions that it 

is always necessary to correct errors related to the 

logging environments and procedure. He states two 

types or errors: systematic error due to the tool and 

analytic error related to environment, standard uses, 

calibration and filtering. This error correction, 

called technical log data processing in this study, is 

referred to as data correction. 

Raw log data processing can be performed on 

at least three levels: downhole in the tool, uphole the 

truck, and at a central computing center 

(Schlumberger, 2004). Where the processing is 

done depends on where the desired results can most 

efficiently be produced, where the extracted 

information is first needed, where the background 

expertise exists, or where technological 

considerations dictate. Whenever it seems desirable, 

the logging tool is designed so that the data are 

processed downhole and the processed signal is 

transmitted to the surface. 

The logs data processing is assured by the data 

acquisition company before data be provided to the 

client. 

The common log technical data processing set 

is the depth calibration, the filtering and the required 

corrections regarding the type of log. For GR logs, 

the main corrections are borehole (hole size) and 

mud weight corrections for open and cased holes, 

potassium correction for open and cased holes and 

environmental corrections. The equations (or 

formulae) and chart for corrected GR determination 

are available in log data acquisition companies’ 

manuals for the different corrections. The following 

is a brief development of GR logs corrections for 
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Schlumberger. The principle consists of 

determining the correction factor and the corrected 

gamma ray (GRcor) is determined from Equation (1). 

 

GRcor = CF ∗ GRmes              (1) 
 

With 𝐺𝑅𝑚𝑒𝑠 the GR measured and CF the correction 

factor. 

Schlumberger developed methods for GR 

correction for borehole and mud weight. Some 

borehole and mud weight correction techniques use 

an intermediate parameter t. Equation (2) helps to 

calculate t for open holes while t for cased holes is 

computed with Equation (3). The correction factor 

is function of t and is determined with the charts 

designed for that purpose, for different tool 

diameters. Figures (1) and (2) show the charts for 

some tool diameters. 

 

𝑡 =
𝑊𝑚

8.345
[
2.54(𝑑ℎ)

2
−

2.54(𝑑𝑠𝑜𝑛𝑑𝑒)

2
]              (2) 

 

With 𝑊𝑚 the mud weight in lbm/gal, 𝑑ℎ the 

diameter of wellbore in inch and 𝑑𝑠𝑜𝑛𝑑𝑒 the outer 

diameter (OD) of the tool in inch. 

 

𝑡 =
2.54

2
[

𝑊𝑚

8.345
(𝑑𝐼𝐷𝑐𝑠𝑔 − 𝑑𝑠𝑜𝑛𝑑𝑒)

+ 𝜌𝑐𝑠𝑔(𝑑𝑂𝐷𝑐𝑠𝑔 − 𝑑𝐼𝐷𝑐𝑠𝑔)

+ 𝜌𝑐𝑒𝑚𝑒𝑛𝑡(𝑑ℎ − 𝑑𝑂𝐷𝑐𝑠𝑔)]   (3) 

 

With 𝑊𝑚 the mud weight in lbm/gal, 𝑑ℎ the 

diameter of wellbore in inch and 𝑑𝑠𝑜𝑛𝑑𝑒 the outer 

diameter (OD) of the tool, 𝑑𝐼𝐷𝑐𝑠𝑔 and 𝑑𝑂𝐷𝑐𝑠𝑔 the 

inner and outer diameter of the casing in inch, 

𝜌𝑐𝑒𝑚𝑒𝑛𝑡 the density of the cement in g/cm3 and 𝜌𝑐𝑠𝑔 

the density of the casing in g/cm3. 

Figures (3) and (4) show the charts for 

borehole correction factors determination for some 

bit sizes and tool diameters respectively. 

The chart of Figure (5) helps in computing the 

correction factor for potassium (K) correction for 

open holes for 6.75-in logging tool. 

 

 
Figure 1 – GR borehole and mud weight correction chart for open holes for four tool diameters (Schlumberger, 2009). 
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Figure 2 – GR borehole and mud weight correction chart for cased holes for two tool diameters (Schlumberger, 2009).  

 

 
Figure 3 – GR borehole and mud weight correction chart for open holes for seven tool diameters (Schlumberger, 2009).  
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Figure 4 – GR borehole correction chart for open holes for two tool diameters, Fbh is the correction factor (Schlumberger, 

2009).  

 

 
Figure 5 – GR potassium correction chart for open holes for 6.75-in tool for mud weight between 8.3 and 20 ppg 

(Schlumberger, 2009). 

 

Bateman (2020) spotlighted that using 

Schlumberger GR data correction methods, other 

things being equal, the magnitude of the 

corrections: 

- changing hole size from 8.5 inch to 9.625 

inch produces an observed GR reduction of 

about 20%; 

- changing mud weight from 8 to 12 lb/gal 

produces a reduction of about 40%; 

- changing from open hole to cased hole with 

7v casing produces a reduction of 60% or so. 

 

After these raw data corrections, the log data 

users need to perform some statistical processing for 

a good interpretation. 

 

1.2. Importance of Gamma Ray Log Data 

Statistical Processing 

 

For the qualitative and quantitative gamma 

ray log data analysis, one needs to know the 

minimum and maximum values of GR recorded 

over a well. The minimum GR value characterizes 

clean sandstones or milestones while the maximum 
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value constitutes the DNA of shales (Oberto, 1984; 

Kamel and Mabrouk, 2003; Schlumberger, 2004 

and Djoï, 2012). In most cases, the minimum and 

maximum GR values used are single values and do 

not really represents formations. Since single 

minimum and maximum GR values of the GR 

measured dataset are odds and their will bias 

qualitative and quantitative interpretations. 

Therefore, the representative minimum and 

maximum values must be determined in the ways 

they really represent formations (clean 

sandstones/limestones and shales).  

Moreover, gamma ray log dataset may contain 

outliers that must be detected and treated before any 

analysis.  

The gamma ray data outliers’ detection and 

treatment as well as its representative minimum and 

maximum values determination can be done 

through statistical data processing. That is why log 

data statistical processing is required for good GR 

log data analysis. 

 

1.3. Statistics for Gamma Ray Logs Data 

Processing 

 

The statistical approach to be proposed by this 

study for gamma ray log data processing requires 

the understanding of some statistical aspects. This 

section will address the main mathematical and 

statistical tools needed. An eye on the well logs data 

acquisition process, makes notice that gamma ray 

log is a statistical variable. Regarding the random 

nature of formations responses to logging tools and 

the recording points choice, gamma ray data 

acquisition must be considered as random sampling 

(Djoï, Nwosu and Ikiensikimama, 2022). A well 

gamma ray data is therefore a gathering of random 

samples of penetrated formations GR. As a result, 

GR log data is a random sample of penetrated 

formations GR random variable. Statistical 

processing of GR log data will bring out some 

statistical items such as outliers, histogram, mode, 

modal class, etc. 

 

1.3.1. Outliers Detection and Treatment 

 

Iglewicz and Hoaglin (1993) define an outlier 

as an observation which deviates so much from 

other observations as to arouse suspicions that it was 

generated by a different mechanism. They are much 

smaller or much larger than the vast majority of the 

observations (Cuisineau and Chartier, 2010). In 

order words, an outlier is an observation that 

appears to deviate markedly from other members of 

the sample in which it occurs (Cuisineau and 

Chartier, 2010). In case of GR log, the outliers are 

the measured values that are much smaller or much 

larger than the vast majority of the observations. 

Mathematically, an outlier is an observation that is 

less than the lower fence or greater than the upper 

fence of the dataset (Iglewicz and Hoaglin, 1993). 

Iglewicz and Hoaglin (1993) and Djoï, Nwosu 

and Ikiensikimama (2023) define datasets lower (L) 

and upper (U) fences with Equations (4) and (5):  

 

𝐿 =  𝑄1 −  1.5 𝐼𝑄𝑅 = 𝑄1 − 1.5 (𝑄3 − 𝑄1)     (4) 

 

𝑈 =  𝑄3 + 1.5 𝐼𝑄𝑅 = 𝑄3 + 1.5 (𝑄3 − 𝑄1)      (5) 

 

With Q1 the lower quartile, Q3 the upper quartile 

and IQR the interquartile range. 

For Illowsky and Dean (2021), a random 

variable sample interquartile interval or 

interquartile range, noted IQR, is referred to as the 

difference between the upper quartile (𝑄3) and the 

lower quartile (𝑄1). That is, (Equation (6)): 

 

𝐼𝑄𝑅 =  𝑄3 − 𝑄1                    (6) 

 

The quartiles of a numerical random variable 

X sample {𝑥1, 𝑥2, … , 𝑥𝑛} are the three attributes that 

divide the sample into four populations of same size 

(Djoï, Nwosu and Ikiensikimama, 2023). Their are 

noted 𝑄𝑘 (1 ≤ 𝑘 ≤ 3). Q1, Q2 and Q3 are 

respectively called first, second and third quartile. 

There are several ways for outlier detection in 

a data set such as boxplot and z-score methods. The 

one this study proposes is data visualization through 

boxplot.  

A numerical data set boxplot (also called Box-

and-whiskiers diagram or plot) is a plot which 

depicts a summary of the lower or first quartile 

(Q1), median or second quartile (Q2), upper or third 

quartile (Q3) and the fences of the dataset 

(Williamson, Sawaryn and Morrison, 2006 and 

Aguinis, Ryan and Harry, 2013). A box plot may 

also indicate which observations, if any, might be 

considered as outliers. 

Keeping the outliers in a dataset affects 

negatively the analysis results. A rule of thumb for 

outliers’ treatment is as follows. 

Outliers are either removed or corrected (replaced) 

by the sample mode or the center of its modal class 

(Djoï, Nwosu and Ikiensikimama, 2023). 
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1.3.2. Other Statistical Tools 

 

A numerical dataset histogram, a sample 

mode or modal class are other statistical tools 

required for gamma ray log data statistical 

processing. 

Histograms are a common visual 

representation of a quantitative variable. 

Histograms summarize the data using rectangles to 

display either frequencies or proportions as 

normalized frequencies (Joseph, 2007). Making a 

histogram, consists of (a) dividing the range of data 

into bins of equal width (usually, but not always); 

(b) counting the number of observations in each 

class and (c) drawing the histogram rectangles 

representing frequencies or percentages by area. For 

Joseph, (2007), a histogram helps in determining 

overall pattern of the sample and its deviation from 

the pattern.  

A statistical variable or sample mode is the 

most frequent value. There can be more than one 

mode in a data set as long as those values have the 

same frequency, and that frequency is the highest 

(Ekwere, 2004; Illowsky and Dean, 2021). The 

mode of a qualitative random variable X sample 
{𝑥1, 𝑥2, … , 𝑥𝑛} is the attribute 𝑥𝑗 of that has the 

highest probability (Equation (7)). 

 

𝑀𝑜𝑑𝑒 (𝑋) = 𝑥𝑗 , 𝑤𝑖𝑡ℎ 𝑃(𝑋 = 𝑥𝑗)

= 𝑀𝑎𝑥1≤ 𝑖 ≤𝑛 {𝑃(𝑋 = 𝑥𝑖)}       (7)     

The modal class of a quantitative random 

variable X sample {𝑥1, 𝑥2, … , 𝑥𝑛} arranged in m 

classes {𝐶1, 𝐶2, … , 𝐶𝑚} is the class 𝐶𝑗 that has the 

highest probability (Equation (8)). 

 

𝑀𝑜𝑑𝑎𝑙 𝐶𝑙𝑎𝑠𝑠 (𝑋) = 𝐶𝑗 , 𝑤𝑖𝑡ℎ 𝑃(𝑋 ∈ 𝐶𝑗  )

= 𝑀𝑎𝑥1≤ 𝑖 ≤𝑚 {𝑃(𝑋 ∈ 𝐶𝑖}         (8)     

 

2. Materials and Methods 

 

2.1. Materials 

 

The main materials used for the case study 

performed in this study are GR log data, Microsoft 

Excel and R Studio. Microsoft Excel and R Studio 

have been used for GR log data visualization, 

manipulation and processing. R studio has also 

served for GR log data qualitative and quantitative 

analyses. 

 

2.2. Methods 

 

2.2.1. Gamma Ray Log Data Statistical 

Processing 

 

As underlined in the section on the 

importance of gamma ray log data statistical 

processing, for good analyses: 

- the potential gamma ray data outliers’ must 

be detected and treated; and 

- representative gamma ray minimum and 

maximum values must be determined. 

In addition to that, odd values of the data set 

must be detected and treated. 

This study proposes an integrated technique 

for these tasks. It sets down methods for (1) odd 

values detection and treatment, (2) outlier detection 

and treatment and (3) representative minimum and 

maximum values determination. 

 

(1)  Odd Values Detection and Treatment 

 

In well log data, some recorded values must 

be considered as odd for some reasons. This study 

focuses on the values that are not in the ranges of 

the parameters of interest. For gamma ray log data 

for instance, one knows that the values must be 

positive and less than or equal to 150 GAPI (on 150 

GAPI scale) and 200 GAPI (on 200 GAPI scale). 

So, any value out of these ranges (negative or 

greater than the cutoffs) are odd values. 

At this stage of the data processing, odd 

values must be detected and removed from the 

dataset. 

 

(2)  Outliers Detection and Treatment 

 

The approach for outliers’ detection will be 

based on data visualization with boxplot. The 

algorithm proposed for outliers’ detection and 

treatment is as follows. 

 

Algorithm 1: Algorithm for Outliers Detection 

and Treatment 

 

Step 1: Plot the boxplot of the log dataset. If 

there are outliers in the data set, then move to steps 

2 and 3. 

Step 2: 2.a- Plot the histogram of the log 

dataset with class intervals of 5 to 10% of the data 

range. 

 2.b- Identify the log dataset modal class and 

compute the modal class center. 
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Step 3: Replace the log dataset outliers by the 

modal class center.  

 

(1) Representative Minimum and Maximum 

Values Determination 

 

While interpreting gamma ray log data, the 

minimum and maximum values must be determined 

in the ways they really represent formations (clean 

sandstones/limestones and shales). Indeed, the 

minimum GR value characterizes clean sandstones 

or milestones while the maximum value presents 

shales (Oberto, 1984; Kamel and Mabrouk, 2003; 

Schlumberger, 2004 and Djoï, 2012). In most cases, 

the minimum and maximum GR values used are 

single values and do not really represents 

formations. This study sets a comprehensive 

technique for gamma ray representative minimum 

and maximum values determination. The proposed 

algorithm is as follows. 

 

Algorithm 2: Algorithm for Representative 

Minimum and Maximum Determination 

 

Step 1: Determine the number N of times the 

minimum and maximum must be each counted in 

the log dataset to be able to characterize the 

sandstones (or limestones) and shales respectively 

and compute the corresponding frequency F. This 

number must correspond to at least 5 to 10 ppt (party 

per thousand, that is 0.5 to 1%) of the dataset length. 

Step 2: Plot the histogram of the log dataset 

with class intervals that allow to have leftward 

classes with frequencies Fi less than F. 

Step 3: Identify the class Cp that satisfies 

∑ Fi = F
p
i=1 . The upper limit Up of Cp is the 

representative minimum researched. 

Step 4: Plot the histogram of the log dataset 

with class intervals that allow to have rightward 

classes with frequencies Fi less than F. 

Step 5: Identify the class Cq that satisfy 

∑ Fi = Fm
i=q . The lower limit Lq of Cq is the 

representative maximum researched. 

 

2.2.2. Evaluation of Well Log Data Statistical 

Processing Impact 

 

Well log data statistical processing impact 

assessment will consist of evaluating how the 

statistical processing of gamma ray data affect 

positively the results of data analyses. For that, one 

will proceed to the qualitative and quantitative 

analysis of unprocessed and processed gamma ray 

data and identify the main improvements or 

differences obtained in the results. It is therefore 

necessary to address the methodology to be used for 

gamma ray log data analyses. 

As for most of the well-logs, two types of analyses 

are usually performed on GR log data: qualitative 

and quantitative analyses. This section addresses the 

actual gamma ray qualitative and quantitative 

analyses. 

 

A. Gamma Ray Log Data Qualitative Analysis 

As stated by Schlumberger (2004), the main 

purposes of GR and NGS qualitative analysis are the 

following:  

- differentiate potentially porous and 

permeable reservoir rocks (sandstone, 

limestone, dolomite) from nonpermeable 

clays and shales; 

- define bed boundaries; 

- tie cased hole to openhole logs; 

- give a qualitative indication of shaliness; 

- monitor radioactive tracers; 

- aid in lithology (mineral) identification; 

- in the case of the NGS log, detect and 

evaluate deposits of radioactive minerals; 

- in the case of the NGS log, define the 

concentrations of potassium, thorium, and 

uranium; 

- in the cases of the NGS log, monitor 

multiple isotope tracers. 

As one can see, all the above converge to 

wells stratigraphic column determination. One of 

the objectives of the current study being to propose 

a gamma ray data statistical processing technique 

for unbiased qualitative analysis thereof, this 

subsection will focus on the gamma ray qualitative 

analysis that will be positively impacted by the 

technique to be proposed: well stratigraphic column 

determination. A well stratigraphic column 

describes the vertical location of rocks penetrated 

by the well; it shows the sequence of sedimentary 

rocks, with the oldest rocks on the bottom and the 

youngest on the top (Wikkipedia, 2024). 

The GR is usually used to identify boundaries, 

primarily shale units from other lower radioactivity 

formations (limestones, sandstones and dolomites) 

and to quantify shale volume. In fractured 

formations, an increase in the gamma ray reading 
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without concurrently higher formation shaliness can 

be observed (Karacan, 2009). 

According to Djoï (2012), total gamma ray 

signature can be used to identify clean sandstones 

and limestones, shaly sandstones and limestones, 

sandy shales and shales. Since GR is related to the 

shale volume of the formations, the shale volume 

(Vsh) signature is: 

- less than 25% for clean sandstones and 

limestones; 

- between 25 and 50% for shaly sandstones 

and limestones; 

- between 50 and 75% for sandy shales; 

- between 75 and 100% for shales. 

Contrarily to Djoï (2012), Kamel and 

Mabrouk (2003) set other Vsh cutoff for rock 

differentiation as follows: rocks can be considered 

as clean if Vsh < 10%, shaly if Vsh ranged from 10 

to 33% and if the Vsh is more than 33%, it is 

considered to be shale. 0% and 100% of Vsh 

correspond respectively to the representative 

minimum and maximum values of GR. 

No matter the shale volume cutoff used, the 

corresponding GR values to shale volume are 

determined on the basis of GR scale used for the log 

data presentation (150 or 200 GAPI scale). 

As stated by Oberto (1984) and Schlumberger 

(2004), natural gamma ray spectrometry (NGS) can: 

(a) differentiate between shales and potassium 

salts; these last minerals having a much higher 

potassium content than the clay minerals, and 

no thorium content since thorium is insoluble 

and can be considered as an indicator of 

detrital origin. So, in front of potassium 

evaporites, the Th curve will be flat and near 

zero while the K curve will show a high 

percentage of potassium and a shape generally 

very similar to that of the total gamma ray, at 

least if at the same time the uranium curve is 

flat and near zero (showing little organic 

material in the rock). 

(b) Recognize the potassium evaporite mineral, 

through its potassium content, if this mineral 

form a sufficiently thick bed compared to the 

NGS vertical resolution. If this is not the case, 

a combination of the NGS with other logs is 

necessary for a complete and accurate 

mineralogy determination in evaporite series. 

Since the case study will be performed on 

total GR log data, the following is the algorithm to 

use for well stratigraphic column determination. 

 

Algorithm 3: Algorithm for formation 

identification 

 

Step 1: Determine the baselines. 

It consists of determines sand, shaly sand, sandy 

shales and shales baselines. They are referred to as 

follow: 

- sand baseline is the vertical line whose GR 

value (noted GR0) corresponds to 0% shale 

volume in the formation and therefore to the 

minimum value of GR. 

- shaly sand baseline is the vertical line whose 

GR value (noted GR25) corresponds to 25% 

shale volume in the formation. 

- sandy shale first and second baselines are 

the vertical lines whose GR values (noted 

GR50 and GR75) correspond respectively to 

50 and 75% shale volumes. 

- shale baseline is the vertical line whose GR 

value (noted GR100) corresponds to 100% 

shale volume in the formation and therefore 

to the maximum value of GR. 

The GR cutoffs GR0, GR25, GR50, GR75 

and GR100 are computed from Equations (9) to 

(13). 

 

𝐺𝑅0 = 𝐺𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐺𝑅)                       (9) 

 

𝐺𝑅100 = 𝐺𝑅𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐺𝑅)                (10) 

 

𝐺𝑅25 =
3 𝐺𝑅𝑚𝑖𝑛 + 𝐺𝑅𝑚𝑎𝑥

4
                      (11) 

 

𝐺𝑅50 =
𝐺𝑅𝑚𝑖𝑛 + 𝐺𝑅𝑚𝑎𝑥

2
                        (12) 

 

𝐺𝑅75 =
𝐺𝑅𝑚𝑖𝑛 + 3 𝐺𝑅𝑚𝑎𝑥

4
                     (13) 

 

Step 2: Identify the tops and bases of different 

layers as follows. 

- clean sandstones or limestones are formations 

whose GR curves are deflected on the left side 

of the shaly sand baseline. Their tops and bases 

correspond to the cross points of GR curve and 

the shaly sand baseline respectively; 

- shaly sandstones (or shaly limestones) are 

formations whose GR curves are deflected on 

the right side of the shaly sand baseline (or on 

the left side of the sandy shale first baseline) 

and located between the shaly sand and sandy 

shale first baselines.  Their tops and bases 
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correspond to the cross points of GR curve and 

the shaly sand (or the sandy shale first) baseline 

respectively. 

- sandy shales are formations whose GR curves 

are deflected on the right side of the sandy shale 

first baseline (or on the left side of the sandy 

shale second baseline) and located between the 

sandy shale first and second baselines.  Their 

tops and bases correspond to the cross points of 

GR curve and the sandy shale first (or sandy 

shale second) baseline respectively. 

- shales are formations whose GR curves are 

deflected on the right side of the sandy shale 

second baseline and located between the sandy 

shale second baseline and shale baseline.  Their 

tops and bases correspond to the cross points of 

GR curve and the sandy shale second baseline 

respectively. 

 

B. Gamma Ray Log Data Quantitative Analysis 

 

The determination of reservoir quality in 

terms of petrophysical parameters, lithology 

identification, porosity, type and distribution of 

reservoir fluids, formation permeability and 

anticipated water cut estimates, is mainly based on 

the evaluation of shale volume (Vsh) (Kamel and 

Mabrouk, 2003). Gamma ray log is a shale volume 

indicator and can then be used for shale volume 

computation. Oberto (1984), Maget (1990), 

Hamada (1996), Karacan (2009), Szabó (2011), 

Fadiya, Alao and Adetuwo (2018), Mohammed 

(2021), Kamayoul, Ehirim and Ikiensikimama 

(2021) and Djoï, Nwosu and Ikiensikimama (2022) 

underlined in their studies that gamma ray shale 

volume must be computed from the gamma ray 

shale index models. The gamma ray shale index is 

computed from Equation (14) (Hamada, 1996 and 

Mohammed, 2021). 

 

(𝐼𝑠ℎ)𝐺𝑅 =
𝐺𝑅 − 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
                        (14) 

 

With GR the total gamma ray read, GRmin the 

minimum of total GR and GRmax the maximum of 

total GR. GRmin and GRmax are respectively the GR 

readings in the clean formations (clean sandstone 

and limestone) and the pure shale (Karacan O. C., 

2009). 

Oberto, S. (1984) stated that natural gamma 

ray spectrometry can help for better shale volume 

index computation stressing that potassium shale 

volume index, (𝐼𝑠ℎ)𝐾, and thorium shale volume 

index, (𝐼𝑠ℎ)𝑇ℎ, will serve as better shale indicators 

than the total gamma ray shale volume index 
(𝐼𝑠ℎ)𝐺𝑅 and uranium shale volume index, (𝐼𝑠ℎ)𝑈, 

since the general random associativity of uranium 

with shale has been eliminated. (𝐼𝑠ℎ)𝐾 and (𝐼𝑠ℎ)𝑇ℎ 

are computed as follows (Equations (15) and (16)). 
 

(𝐼𝑠ℎ)𝐾 =
𝐾 − 𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛
                           (15) 

 

(𝐼𝑠ℎ)𝐺𝑅 =
𝑇ℎ − 𝑇ℎ𝑚𝑖𝑛

𝑇ℎ𝑚𝑎𝑥 − 𝑇ℎ𝑚𝑖𝑛
                     (16) 

 

With K and Th the respective potassium and 

gamma thorium radiations read, Kmin, Kmax, Thmin 

and Thmax the minimum and maximum of 

potassium and thorium gamma radiations 

respectively. 

Several GR shale volume index models exist 

for formation shale volume computation: the linear 

and non-linear models (Fadiya, Alao and Adetuwo, 

2018). 

For Oberto (1984), Maget (1990), Hamada 

(1996), Karacan (2009), Szabó (2011), Fadiya, Alao 

and Adetuwo (2018) Mohammed (2021), 

Kamayoul, Ehirim and Ikiensikimama (2021) and 

Djoï, Nwosu and Ikiensikimama (2022), the linear 

model states that the shale volume 𝑉𝑠ℎ is equal to 

the shale volume index 𝐼𝑠ℎ. Equation (17) is the 

linear equation for total gamma ray shale volume 

computation.  

Similar equations are used for potassium, 

thorium and uranium shale volume calculation. 

 

𝑉𝑠ℎ =
𝐺𝑅 − 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
                             (17) 

 

The non-linear method of Larionov of 

Equation (18) is used for shale volume estimation 

for tertiary and younger rocks (Kamayoul, Ehirim 

and Ikiensikimama, 2021). Equation (19) helps in 

estimating the shale volume for older rocks (Szabó, 

2011 and Mohammed, 2021). 

 

𝑉𝑠ℎ = 0.083 ∗ (2(3.7∗𝐼𝑠ℎ) − 1)                 (18) 

 

𝑉𝑠ℎ = 0.083 ∗ (2(2∗𝐼𝑠ℎ) − 1)                   (19) 

 

Mohammed (2021) and Djoï, Nwosu and 

Ikiensikimama (2022) have shown that two other 

non-linear models have been developed by Steiber 
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in 1970 and Clavier in 1971. Steiber and Clavier’s 

models are respectively given by Equations (20) and 

(21). 

𝑉𝑠ℎ =
𝐼𝑠ℎ

3 − 2 ∗ 𝐼𝑠ℎ
                                        (20) 

 

𝑉𝑠ℎ = 1.7 − √3.38 − (𝑉𝑠ℎ − 0.7)2        (21) 

 

2.3. Data Case Study 

 

The case study has been performed on a Gulf 

of Guinea’s offshore well gamma ray log data. It has 

consisted of: 

- carrying out the statistical processing of the 

well gamma ray log data in accordance with the 

approach set in the methodology section; 

- performing the qualitative and quantitative 

analysis of the statistically unprocessed well 

gamma ray log data; 

- performing the qualitative and quantitative 

analysis of the statistically processed well 

gamma ray log data; 

- comparing the results obtained from the 

unprocessed and processed data. 

The raw data have undergone odds values 

detection and treatment. The gamma ray log data 

analysis done are the stratigraphic column 

determination and formations shale volume 

computation for a specific interval, using the 

methods defined in the methodology section.  

 

3. Results and Discussion 

 

3.1. Gamma Ray Data Statistical Processing 

 

The statistical processing performed on the 

gamma ray log data encompasses the: 

- odd values detection and treatment in 

accordance with the methodology set above; 

- outliers detection and treatment using 

algorithm 1; 

- representative minimum and maximum values 

determination using algorithm 2. 

The results are as follows. 

As shown in first boxplot of Figure (6), the 

data contains recorded values greater 150 GAPI 

whereas the 150 GAPI scale is used. After the 

removal of these odd values, it has been noticed up 

to 207 outliers (see boxplot 2 of Figure (6)). 

Replacing the outliers by the center of the dataset 

modal class, the boxplot 3 of the same figure is 

obtained. The semi-processed dataset is the one 

gotten after removing the odd values. Figure (7) 

shows the profiles of unprocessed, semi-processed 

and processed GR log data. 

The minimum and maximum values of semi-

processed data noted are respectively 9.2508 and 

149.3187 GAPI while those of processed data are 

respectively 12.4 and 107 GAPI. The difference 

between the maximum and minimum values is 

140.0679 GAPI for the semi-processed data and 

99.5563GAPI for the processed data. One can 

notice the greatness of that difference of semi-

processed data comparatively to processed data. As 

a result, for a same underground formation 

penetrated by the well, the semi-processed data 

analysis will underestimate the formation shale 

volume. If for instance, that formation is located in 

the oil or gas reservoir pay zone, then its effective 

porosity and flow performance will be 

overestimated. 

The gamma ray cutoffs (GR25, GR50 and 

GR75) obtained from the semi-processed data are 

respectively 44.27, 79.28 and 114.30 GAPI while 

those from the processed data are 36.05, 59.70 and 

83.35 GAPI. The first remark is that the baselines 

(shaly sand, sandy shale and shale baselines) 

obtained from the semi-processed data analysis are 

respectively located more rightward to those from 

the processed data analysis. The main consequence 

is that the semi-processed data analysis will hide the 

shaliness of formations. That is, in same conditions 

of thickness, the semi-processed data analysis 

results will show: 

- a shaly sandstone as a sandstone; 

- a sandy shale as a shaly sandstone or sandstone; 

- a shale as a sandy shale or shaly sandstone or 

sandstone. 

 

3.2. Well Stratigraphic Column Determination 

 

The qualitative analysis of the gamma ray 

data has been performed on the semi-processed and 

processed data over an interval of 78.5 meters of 

thickness with 2,875 mMSL and 2,953.5 mMSL as 

top and base depths respectively. The aim is to show 

how the log data analysis results are affected when 

the statistical data processing is not carried out. The 

outcomes of these analyses are presented as follows.  
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Figure 6 – Boxplots of unprocessed, semi-processed and processed gamma ray data. 

 

 
Figure 7 - Profile of unprocessed, semi-processed and processed gamma ray log data. 
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The predefined condition is that only layers 

with thickness greater than 1 meter have being 

considered over the qualitative analysis process. 

Figure (8) shows the different layers 

identified from the analyses of semi-processed and 

processed GR log data. Twenty-one layers has been 

obtained from the semi-processed data with 

lithologies going from shaly sandstone to shale. The 

shaly sandstones and sandy shales are predominant 

with only two shale layers. The formations 

thicknesses range from 1.14 to 8.84 meters. Table 

(1) summarizes the base and top depths, lithologies 

and thicknesses of formations. 

As far as the processed data analysis results 

are concerned, as summarized by Table (2), the well 

has penetrated twenty layers. These formations are 

either sandstones, or shaly sandstones, or sandy 

shales, or shales. Seven shales and six sandy shales 

have been noted, the remainder being sandstones or 

shaly sandstones. The thinnest formation is 0.84-

meter thick while the thickest one is 10.21. 

 

 

Figure 8 – Layers flow from data analysis. Left: Semi-processed data analysis results. Right: Processed data analysis results. 

Red vertical dashed lines are the baselines. Red horizontal dashed lines are the layers tops and bases. Black dashed lines are the 

tops and bases of sets of layers. 
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Table 1 – Results of semi-processed data qualitative analysis. 

N° Layer 

Top 

depth 

(mMSL) 

Base 

depth 

(mMSL) 

Nature 
Thickness 

(m) 

1 A 2,875 2,878.7 
Shaly 

sandstone 
3.66 

2 B 2,878.7 2,884.2 
Sandy 

shale 
5.49 

3 C 2,884.2 2,891.8 
Shaly 

sandstone 
7.62 

4 D 2,891.8 2,895.3 
Sandy 

shale 
3.51 

5 E 2,895.3 2,896.4 
Shaly 

sandstone 
1.14 

6 F 2,896.4 2,897.7 
Sandy 

shale 
1.22 

7 G 2,897.7 2,903.8 
Shaly 

sandstone 
6.10 

8 H 2,903.8 2,912.6 
Sandy 

shale 
8.84 

9 I 2,912.6 2,919.8 
Shaly 

sandstone 
7.16 

10 J 2,919.8 2,922 Shale 2.21 

11 K 2,922 2,923.4 
Shaly 

sandstone 
1.45 

12 L 2,923.4 2,928.6 
Sandy 

shale 
5.18 

13 M 2,928.6 2,931.1 
Shaly 

sandstone 
2.51 

14 N 2,931.1 2,935 
Sandy 

shale 
3.89 

15 O 2,935 2,936.5 Shale 1.52 

16 P 2,936.5 2,943.5 
Shaly 

sandstone 
7.01 

17 Q 2,943.5 2,945.5 
Sandy 

shale 
1.98 

18 R 2,945.5 2,948.2 
Shaly 

sandstone 
2.67 

19 S 2,948.2 2,951.3 
Sandy 

shale 
3.12 

20 T 2,951.3 2,953.5 
Shaly 

sandstone 
2.21 

21 U 2,953.5 2,960.1 
Sandy 

shale 
6.55 

 

3.3. Formation Shale Volume Computation 

 

The results of formations shale volumes 

computation are summarized in Table (3). From the 

semi-processed data analysis, it can be seen that 

formations shale volumes range from 33.5 to 

82.21%. The shaly sandstones A, E, G are highly 

shaly while the sandy shales D, F, H, L, N, Q and U 

are highly sandy. The smallest formation shale 

volume computed from the processed data is 

23.34% while the highest is 87.69%. Only two shaly 

sandstones, O’ et S’, are highly shaly when the 

sandy shales D’, P’ and R’ contain great proportions 

of sands. 

 

 

Table 2 – Results of processed data qualitative analysis. 

N° Layer 

Top 

depth 

(mMSL) 

Base 

depth 

(mMSL) 

Nature 
Thickness 

(m) 

1 A’ 2,875 2,878.8 
Sandy 

shale 
3.73 

2 B’ 2,878.8 2,882.9 Shale 4.11 

3 C’ 2,882.9 2,883.7 Sandstone 0.84 

4 D’ 2,883.7 2,892.3 
Sandy 

shale 
8.61 

5 E’ 2,892.3 2,894.6 Shale 2.29 

6 F’ 2,894.6 2,904 
Sandy 

shale 
9.37 

7 G’ 2,904 2,907.9 Shale 3.96 

8 H’ 2,907.9 2,909.5 Sandstone 1.52 

9 I’ 2,909.5 2,919.7 
Sandy 

shale 
10.21 

10 J’ 2,919.7 2,923.3 
Shaly 

sandstone 
3.58 

11 K’ 2,923.3 2,925.2 Shale 1.98 

12 L’ 2,925.2 2,932.2 
Sandy 

shale 
6.93 

13 M’ 2,932.2 2,934.8 shale 2.67 

14 N’ 2,934.8 2,936.3 Sandstone 1.45 

15 O’ 2,936.3 2,942.9 
Shaly 

sandstone 
6.63 

16 P’ 2,942.9 2,948.3 
Sandy 

shale 
5.33 

17 Q’ 2,948.3 2,949.5 Shale 1.22 

18 R’ 2,949.5 2,951.5 
Sandy 

shale 
2.06 

19 S’ 2,951.5 2,953.2 
Shaly 

sandstone 
1.68 

20 T’ 2,953.2 2,960.1 Shale 6.86 

 

3.4. Comparative Analysis of Results 

 

Since only similar formations can be 

compared and the shaliness of layers depends on the 

number of recorded GR values and therefore on 

their thicknesses, the correlation of both 

stratigraphic columns has helped to identify sixteen 

similar sets of layers (Figure (8)). The 

characteristics of these layers are those of Table (4). 

Figures (9) and (10) show the thicknesses and shale 

volumes of the sets of formations. It is noted that the 

semi-processed data analysis has globally 

underestimated the thickness of thicker formations 

and underestimate the shale volumes of thicker 

formations and those for which the estimated 

thicknesses from both analyses are the same or close 

to each other. The semi-processed data analysis 

underestimation of thicker formations thicknesses is 

due to the fact that the baselines (shaly sand, sandy 

shale and shale baselines) from the semi-processed 

data analysis are respectively located more 

rightward to those from processed data analysis. 

That is, the gamma ray cutoffs (GR25, GR50 and 

GR75) obtained from the semi-processed data are 

respectively higher than those from the processed 
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data. In the same time, the semi-processed data 

analysis underestimation of shale volumes of 

thicker formations and formations with same 

estimated thicknesses from both analyses or close to 

each other is explained by the fact that the 

difference between the maximum and minimum 

values of the semi-processed data is greater than the 

one of the processed data. 
 

Table 3 – Formations shale volumes from the semi-processed and processed data analyses. 

 Semi-processed data analysis results Processed data analysis results 

N° Layer Nature 
Shale 

Volume (%) 
Layer Nature 

Shale 

Volume (%) 

1 A Shaly sandstone 43.94 A’ Sandy shale 62.11 

2 B Sandy shale 62.68 B’ Shale 87.09 

3 C Shaly sandstone 39.18 C’ Sandstone 23.34 

4 D Sandy shale 61.31 D’ Sandy shale 56.00 

5 E Shaly sandstone 47.84 E’ Shale 77.86 

6 F Sandy shale 63.08 F’ Sandy shale 62.83 

7 G Shaly sandstone 42.35 G’ Shale 78.53 

8 H Sandy shale 60.97 H’ Sandstone 23.34 

9 I Shaly sandstone 39.92 I’ Sandy shale 61.73 

10 J Shale 78.70 J’ Shaly sandstone 34.70 

11 K Shaly sandstone 33.82 K’ Shale 78.82 

12 L Sandy shale 55.35 L’ Sandy shale 60.00 

13 M Shaly sandstone 39.50 M’ shale 83.22 

14 N Sandy shale 66.21 N’ Sandstone 23.34 

15 O Shale 80.21 O’ Shaly sandstone 45.27 

16 P Shaly sandstone 33.56 P’ Sandy shale 55.91 

17 Q Sandy shale 65.06 Q’ Shale 85.18 

18 R Shaly sandstone 38.25 R’ Sandy shale 57.41 

19 S Sandy shale 61.5 S’ Shaly sandstone 43.12 

20 T Shaly sandstone 33.91 T’ Shale 87.69 

21 U Sandy shale 62.45 - - - 

Table 4 – Shale volumes and thickness of sets of formations. 

 Semi-processed data analysis results Processed data analysis results 

N° Set of layers Nature 
VSH 

(%) 

Thickness 

(m) 
Set of layers Nature 

VSH 

(%) 

Thickness 

(m) 

N° Set of layers Nature 
VSH 

(%) 

Thickness 

(m) 
Set of layers Nature 

VSH 

(%) 

Thickness 

(m) 

1 S1 = {A} Shaly sandstone 43.94 3.66 S’1 = {A’} Sandy shale 62.11 3.73 

2 S2 = {B} Sandy shale 62.68 5.49 
S’2 = {B’, 

C’} 
Shale and sandstone 55.21 4.95 

3 S3 = {C} Shaly sandstone 39.18 7.62 S’3 = {D’} Sandy shale 56 8.61 

4 S4 = {D} Sandy shale 61.31 3.51 S’4 = {E’} Shale 77.86 2.29 

5 S5 = {E, F, G} 

Shaly sandstones 

intercalated by sandy 

shale 

53.10 8.46 S’5 = {F’} Sandy shale 62.83 9.37 

6 S6 = {H} Sandy shale 60.97 8.84 
S’6 = {G’, 

H’} 
Shale and sandstone 50.94 5.49 

7 S7 = {I} Shaly sandstone 39.92 7.16 S’7 = {I’} Sandy shale 61.73 10.21 

8 S8 = {J, K} 
Shale and shaly 

sandstone 
56.26 3.66 S’8 = {J’} Shaly sandstone 34.70 3.58 

9 S9 = {L, M} 
Sandy shale and shaly 

sandstone 
47.42 7.70 

S’9 = {K’, 

L’} 
Shale and sandy shale 69.41 8.92 

10 S10 = {N} Sandy shale 66.21 3.89 S’10 = {M’} shale 83.22 2.66 

11 S11 = {O} Shale 80.21 1.52 S’11 = {N’} Sandstone 23.34 1.44 

12 S12 = {P} Shaly sandstone 33.56 7.01 S’12 = {O’} Shaly sandstone 45.27 6.63 

13 S13 = {Q, R} 
Sandy shale and shaly 

sandstone 
51.66 4.65 S’13 = {P’} Sandy shale 55.91 5.33 

14 S14 = {S} Sandy shale 61.51 3.12 
S’14 = {Q’, 

R’} 
Shale and sandy shale 71.29 3.28 

15 S15 = {T} Shaly sandstone 33.91 2.21 S’15 = {S’} Shaly sandstone 43.11 1.68 

16 S16 = {U} Sandy shale 62.45 6.55 S’16 = {T’} Shale 87.69 6.88 
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Figure 9 – Well formations thickness profile. Order 1 for the set of layers {A} and {A’}, order 2 for the sets of layers {B} and 

{B’, C’}, …, order 16 for sets of layers {U} and {T’}. 

 
Figure 10 – Well formations shale volume profile. Figure – Well formations thickness profile. Order 1 for the sets of layers 

{A} and {A’}, order 2 for sets of layers {B} and {B’, C’}, …, order 16 for sets of layers {U} and {T’}. 
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3.5. Impact of Gamma Ray Data Statistical 

Processing on the Analysis Results 

 

As it can be noticed through the results of the 

case study, the statistical processing of gamma ray 

log data prevents from: 

- the underestimation of thicker formations 

thicknesses; 

- the underestimation of formations shale 

volumes. 

The main practical advantage is that it will 

prevent geologists, petro-physicists and reservoir 

engineers from the overestimation of oil or gas 

reservoirs effective porosity and flow performance 

and therefore from the overestimation of oil or gas 

initially in place and reserves. 

 

4. Conclusion 

 

Over oil and gas fields exploration and 

development phases, one of the main challenges of 

geoscientists and petroleum engineers is the 

petrophysical characterization of potential or 

discovered fields or reservoirs. Well logs data are 

most used for that purpose. They play key roles in 

wells stratigraphic column establishment and the 

computation of reservoir formations petrophysical 

parameters such as shale volume, porosity, 

permeability, fluids (water, oil and gas) saturation, 

reservoirs net pay thickness, fluids contacts (WOC 

and GOC), the skin effect and reservoir pressure. 

Due to the conditions and the environment of 

well log data acquisition, they undergo some 

technical processing. For gamma ray log data for 

instance, the minimum and maximum values of 

recorded GR are required for qualitative and 

quantitative analyses. These GR minimum and 

maximum values must be determined in the ways 

they are representative, that is, the really 

characterize the clean sandstones/limestones and 

shales respectively. Indeed, although the technical 

gamma log data processing, some data analysis 

results do not reflect the reality. The statistical data 

processing is important for unbiased analyses. 

This study aims to propose statistical 

techniques for gamma ray logs data processing that 

will contribute to the reduction of biases related to 

their qualitative and quantitative analyses. A case 

study has been performed on a Gulf of Guinea’s 

offshore well gamma ray log data. It has consisted 

of semi-statistical processing and whole statistical 

processing of the gamma ray log data, well 

stratigraphic columns establishment and formations 

shale volumes computation from the semi-

processed and processed data.  

The results show that the difference between 

the maximum and minimum values for the semi-

processed data is almost twice the one of the 

processed data, what will lead to the 

underestimation of formations shale volumes and 

therefore to the overestimation of reservoirs 

effective porosity and flow performance. Moreover, 

the baselines (shaly sand, sandy shale and shale 

baselines) obtained from the semi-processed data 

are respectively located more rightward to those 

from the processed data. The main consequence is 

that the semi-processed data analysis has hidden the 

shaliness of formations comparatively to the 

processed data analysis. Indeed, the semi-processed 

data analysis revealed twenty-one layers showing 

lithologies going from shaly sandstone to shale with 

the predominance of shaly sandstones and sandy 

shales and counting only two shales. The processed 

data analysis has, on contrary, led to a twenty-layer 

column of sandstones, shaly sandstones, sandy 

shales and shales with six sandy shales and seven 

shales. A comparative analysis shows that the semi-

processed data analysis has globally underestimated 

the thickness of thicker formations and 

underestimate the shale volumes of thicker 

formations and those for which the estimated 

thicknesses from both analyses are the same or close 

to each other. 

In summary, it is noticed, through the results 

of the case study, that the statistical processing of 

gamma ray log data prevents from the 

underestimation of thicker formations thicknesses 

and formations shale volumes. The main practical 

advantage is that it will prevent geologists, petro-

physicists and reservoir engineers from the 

overestimation of oil or gas reservoirs effective 

porosity and flow performance and therefore from 

the overestimation of oil or gas initially in place and 

reserves. 

We recommend: 

- to use of the statistical gamma ray log data 

processing technique developed in this study 

for gamma ray log and other similar log data 

processing; 

- to identify other statistical data processing 

required for other types of log data and propose 

the processing approaches. 
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