Comparative study of the reliability of some deterministic and stochastic interpolation methods for ground bearing capacity mapping: Case of the Olembé social housing site in Cameroon
DOI:
https://doi.org/10.70597/ijget.v6i1.493Keywords:
Cartography, Bearing capacity, Interpolation, Deterministic, StochasticAbstract
This paper deals with the comparative study of the reliability of some deterministic and stochastic interpolation methods for ground bearing mapping. Covering an area of 121,481.65 m², the site covered by this study is located in the locality of Olembé in the central region of Cameroon. The methodology consisted of collecting from the Ministry of Housing and Urban Development the results of the tests relating to the bearing capacity of the soil for depths of 1.2m, 2.4m and 4.5m as well as the location of the sounding points. Using ARCGIS mapping software, ground bearing mapping was performed by Inverse Distance Weighting (IDW) and Local Polynomial Interpolation (LPI) as deterministic interpolation methods while Ordinary Kriging (KO) and Empirical Bayesian Kriging (KBE) were retained as stochastic methods. The comparative analysis of the interpolation error according to the different methods studied shows that the stochastic methods are the most precise and the empirical Bayesian kriging is the most precise of all. The interpolation error between 8.1% and 41.20% for the deterministic methods while for the stochastic methods it is between 0.4% and 8.80%. The minimum average of bearing capacity recorded for the deterministic methods is 2.35 bars, 3.52 bars, 1.89 Against 1.58bars, 2.42bars and 1.75 bars for the stochastic methods at a depth of 1.2m, 2.4m and 4.5m respectively.
References
Achilleos, G.A., 2011. The Inverse Distance Weighted interpolation method and error propagation mechanism – creating a DEM from an analogue topographical map. Journal of Spatial Science, 56(2), pp. 283-304. http://dx.doi.org/10.1080/14498596.2011.623348
AFNOR – Association française de normalisation, 1990. NF P94-115: Soils investigation and testing. In situ tests. Dynamic penetration B tip. AFNOR, France.
AFNOR – Association française de normalisation, 2013. NF P 94-500: Missions d'ingénierie géotechnique - Classification et spécifications. AFNOR, France.
Ambassa, Z. and Amba, J.C., 2020. Assessment of stiffness and strength parameters for the soft soil Model of clays of Cameroon. Hindawi, International Journal Advances in Civil Engineering, 2020, pp.1-16. https://doi.org/10.1155/2020/8877367
Baillargeon. S., Pouliot. J, Rivest. J. P, Fortin. V., and Fitzback. J., 2004. Interpolation statistique multivariable de données de précipitations dans un cadre de modélisation hydrologique. Colloque Géomatique, Montréal.
Baillargeon. S., 2005. Le krigeage : revue de la théorie et application à l’interpolation spatiale de données de précipitations. Faculté des Sciences et de Genie, Université Laval, QUEBEC.
Bosser. P., 2011. Interpolation spatiale. Ecole Nationale des Sciences Géographiques, France.
Boulier, F., 2020. Calcul Numérique, Interpolation, Intégration, Équations Différentielles. Polytech Lille, France.
ESRI - Environmental Systems Research Institute, 2022. Empirical Bayesian Kriging. [online] Available at: <https://desktop.arcgis.com/fr/arcmap/10.4/extensions/geostatistical-analyst/what-is-empirical-bayesian-kriging-.htm>. [Accessed 6 September 2022].
Fotios, M., Kyriaki, K., Panagiotis, A., and Simeon, P., 2013. Kriging Interpolation Method for Estimation of Continuous Spatial Distribution of Precipitation in Cyprus. British Journal of Applied Science & Technology, 3(4), pp. 1286-1300.
Koussa, M., 2018. Etude comparative entre les méthodes d’interpolation pour la cartographie des Nitrates: Cas d’application les eaux souterraines de Djelfa, Algérie. Agriculture and Foresty journal, 2(1), pp. 18-25.
Leborgne, G., 2021. Interpolation polynomiale, intégration numérique, résolution numérique
d'équations défférentielles, ISIMA, France.
Leroux, R., 2007. Définition et application d’une méthodologie pour l’étude de la propagation d’états de mer en milieu cotier.
Rebai, N., Slama, T. and Turk, M.M., 2007. Evaluation de différentes méthodes d’interpolation spatiale pour la production d’un MNT à partir de données topographiques dans un SIG. Revue XYZ, (110), pp. 19-28.
Setianto, A. and Triandini, T., 2013. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. Journal of Applied Geology, 5(1), pp.21-29. https://doi.org/10.22146/jag.7204
Zhengquan, L., Kuo, W. and Hao, M.Y.W., 2018. An adjusted inverse distance weighted spatial interpolation method. In: 3rd International Conference on Communications, Information Management and Network Security.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 International Journal of Geoscience, Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in this journal are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.