Correlation between Compressive Strength and Cement Content in Soil-Cement Blocks

Autores/as

DOI:

https://doi.org/10.70597/ijget.v12i1.678

Palabras clave:

Correlation, Soil-cement, Cement, Sustainable construction

Resumen

This study investigates the correlation between the compressive strength of soil-cement blocks and the cement content in their mixture. A systematic literature review was conducted, collecting data from 12 scientific articles, resulting in 87 studies. The selected studies provided important information on the cement content, compressive strength, and casting characteristics of the blocks. The data were organized and statistically analyzed using Microsoft Excel 2019. A linear regression model was applied to evaluate the relationship between cement content and compressive strength measured at 28 days of curing. The results indicate a positive correlation (Pearson's correlation coefficient, r = 0.589) as described in the literature, suggesting that increasing cement content generally improves compressive strength. However, the results also reveal that other factors, such as soil type, compaction pressure, curing conditions, and moisture content, significantly influence the improvement in block performance. This research contributes to the optimization of soil-cement formulations, promoting more sustainable construction practices, minimizing cement consumption, and ensuring structural integrity. Limitations of the study include the variability in experimental conditions between the reviewed studies and the reliance on secondary data. Future research should incorporate experimental investigations to validate and expand on these results.

Citas

ABNT – Associação Brasileira de Normas Técnicas, 2012a. NBR 8492: Tijolo de solo-cimento: análise dimensional, determinação da resistência à compressão e da absorção de água – Método de ensaio. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas, 2012b. NBR 12023: Solo-cimento – Ensaio de compactação. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas, 2012c. NBR 12253: Solo-cimento: dosagem para emprego como camada de pavimento – Procedimento. Rio de Janeiro: ABNT.

ACI – American Concrete Institute, 2009. ACI 230.1R-09: Report on soil-cement. Farmington Hills: American Concrete Institute.

Al Biajawi, M.I., Embong, R., Muthusamy, K., Ismail, N. and Obianyo, I.I., 2022. Recycled coal bottom ash as sustainable materials for cement replacement in cementitious composites: a review. Construction and Building Materials, 338, p.127624. https://doi.org/10.1016/j.conbuildmat.2022.127624

ASTM – Sociedade Americana de Testes e Materiais, 1994. ASTM C67-94: Standard test methods for sampling and testing brick and structural clay tile. West Conshohocken: ASTM International.

ASTM – Sociedade Americana de Testes e Materiais, 2017. ASTM D1632-07: Practice for making and curing soil-cement compression and flexure test specimens. West Conshohocken: ASTM International.

Bureau of Indian Standards, 1992. IS 3495-1 to 4: Methods of test for burnt clay building brick. New Delhi: BIS.

Dos Santos, C.M., Souza, A.A.F., Oliveira, H.A., Melo, L., Almeida, V.G.O. and Melo, F.M.C. de, 2023. Estudo da influência de parâmetros de processo na produção de tijolos de solo-cimento. Cerâmica Industrial, 28(1), p.e162801. https://doi.org/10.4322/cerind.2024.025

Eko, R.M. and Riskowski, G., 2001. A procedure for processing soil-cement mixtures with sugarcane bagasse. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, 3, pp.1-11. Available at: <https://ecommons.cornell.edu/server/api/core/bitstreams/04ffca40-57f5-4a60-a0da-cf007204c725/content> [Accessed 29 May 2025].

EN – European Standard, 2006. EN 14227-10. Hydraulically bound mixtures – Specifications – Part 10: soil treated by cement. CEN – European Committee for Standardization.

EN – European Standard, 2009. BS EN 12390-3. Testing hardened concrete – Part 3: compressive strength of test specimens. London: BSI – British Standard.

Faleschini, F., Trento, D., Zanini, M.A. and Pelegrino, C.C., 2023. Mechanical strength and environmental sustainability of EAF concrete. In: Biondini, F. and Frangopol, D.M., 2023. Life Cycle of Structures and Infrastructure Systems, 1st ed. pp. 2455–2462. London: CRC Press. https://doi.org/10.1201/9781003323020

Fonsêca, N.J.M., 2018. Potencial para substituição de cimento por cal em tijolos de solo-cimento com incorporação de cerâmica de reuso. Dissertação. Universidade Federal do Rio Grande do Norte.

França, B.R., Azevedo, A.R.G., Monteiro, S.N., Filho, F.C.G., Marvila, M.T., Alexandre, J. and Zanelato, E.B., 2018. Durability of Soil-Cement Blocks with the Incorporation of Limestone Residues from the Processing of Marble. Materials Research, 21(Suppl.1), p.e20171118. https://doi.org/10.1590/1980-5373-MR-2017-1118

Henriques, C., 2011. Análise de regressão linear simples e múltipla. Viseu: Departamento de Matemática, Escola Superior de Tecnologia de Viseu, Portugal.

Hossain, M.U. and Ng Thomas, S., 2019. Influence of waste materials on buildings’ life-cycle environmental impacts: adopting resource recovery principle. Resources, Conservation and Recycling, 142, pp. 10–23. https://doi.org/10.1016/j.resconrec.2018.11.010

Jegandan, S., Liska, M., Osman, A.A. and Al-Tabbaa, A., 2010. Sustainable binders for soil stabilisation. Proceedings of the Institution of Civil Engineers - Ground Improvement, 163(1), pp. 53-61. https://doi.org/10.1680/grim.2010.163.1.53

Khedari, J., Watsanasathapho, P. and Hirunlabh, J., 2005. Development of fiber-based soil-cement block with low thermal conductivity. Cement & Concrete Composites, 27(1), pp.111–116. https://doi.org/10.1016/j.cemconcomp.2004.02.042

Kongkajun, N., Edward, A.L., Pitcharat, I., Wichit, P., Benya, C. and Chakartnarodom, P., 2020. Soil-cement bricks produced from local waste clay bricks and soft sludge from fibercement production. Case Studies in Construction Materials, 13. https://doi.org/10.1016/j.cscm.2020.e00448

Leão, A.S., Araújo, M.C., Jesus, T.B. and Almeida, E.S., 2022. Is soil-cement brick an ecological brick? An analysis of environmental and energetic performance via life-cycle assessment of masonry walls. Sustainability, 14(19), p.12735. https://doi.org/10.3390/su141912735

Leonel, R.F., Folgueras, M.V., Valentina, L.V.O.D., Prim, S.R., Prates, G.A. and Caraschi, J.C., 2017. Characterization of soil-cement bricks with incorporation of used foundry sand. Cerâmica, 63(367), pp. 329-335. https://doi.org/10.1590/0366-69132017633672131

Luo, W., Shu, L., Yuan, J., Xiwen, G., Yunfeng, H., Dongdong, H. and Bo, L., 2021. Use of dehydrated extracted soil in concrete blocks produced with Portland cement or alkali-activated slag: engineering properties and sustainability. Case Studies in Construction Materials, 15, p.e00760. https://doi.org/10.1016/j.cscm.2021.e00760

Nascimento, E.S.S., Souza, P.C. de, Oliveira, H.A. de, Melo Júnior, C.M.M., Almeida, V.G. de O. and Melo, F.M.C. de., 2021. Soil-cement brick with granite cutting residue reuse. Journal of Cleaner Production, 321, p. 129002. https://doi.org/10.1016/j.jclepro.2021.129002

Motta, J.C.S.S., Morais, P.W.P., Rocha, G.N., Tavares, J.C., Gonçalves, G.C., Chagas, M.A., Mageste, J.L. and Lucas, T.P.B., 2014. Tijolo de solo-cimento: análise das características físicas e viabilidade econômica de técnicas construtivas sustentáveis. E-XACTA, 7(1), pp.13-26. http://dx.doi.org/10.18674/exacta.v7i1.1038

Morel, J.C., Pakla, A. and Walker, P., 2007. Compressive strength tests of rammed earth blocks. Construction and Building Materials, 21(2), pp. 303-309. https://doi.org/10.1016/j.conbuildmat.2005.08.021

Oliveira, D.N., 2020. Análise da viabilidade de tijolos de solo-cimento ecológicos na construção civil: uma revisão bibliográfica. Dissertação. Universidade Federal Rural do Semiárido. Available at: <https://repositorio.ufersa.edu.br/items/7707130a-c0e5-43f7-a28d-0be663bc42fb> [Accessed 29 May 2025].

Reddy, B.V.V., Richardson, L. and Nanjunda Rao, K.S., 2007. Improvement of bond strength and characteristics of soil-cement block masonry. Journal of Materials in Civil Engineering, 19(2), pp. 164–172. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(164)

Reddy, B.V.V. and Gupta, A., 2006. Tensile strength of soil-cement block masonry using soil-cement mortars. Journal of Materials in Civil Engineering, 18(1), pp.36-45. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(36)

Reddy, B.V.V. and Gupta, A., 2008. Influence of sand grading on properties of mortar and masonry in soil-cement block masonry. Construction and Building Materials, 22(8), pp.1614-1623. https://doi.org/10.1016/j.conbuildmat.2007.06.014

Reddy, B.V.V., Richardson, L. and Nanjunda Rao, K.S., 2007. Optimal soil grading for soil-cement blocks. Journal of Materials in Civil Engineering, 19(2), pp.139-148. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(139)

Reddy, B.V.V. and Gupta, A., 2005. Characteristics of soil-cement blocks using highly sandy soils. Materials and Structures, 38, pp.651-658. https://doi.org/10.1007/BF02481596

Rocha, J.H.A., Rosas, M.H., Chileno, N.G.C. and Tapia, G.S.C., 2021. Physical-mechanical evaluation of soil-cement blocks containing rice husk ash. Case Studies in Construction Materials, 14, p.e00548. https://doi.org/10.1016/j.cscm.2021.e00548

Souza, M.I.B., Segantini, A.A.S., Santos, J.P. and Silva, J.P.N., 2006. Tijolos prensados de solo-cimento com adição de resíduos de concreto. In: Encontro de Energia no Meio Rural, 6. Campinas.

Tariq, A. and Yanful, E.K., 2013. A review of binders used in cemented paste tailings for underground and surface disposal practices. Journal of Environmental Management, 131, pp. 138-149. https://doi.org/10.1016/j.jenvman.2013.09.039

Walker, P. and Stace, T., 1997. Properties of some cement stabilised compressed earth blocks and mortars. Materials and Structures, 30(9), pp.545-551. https://doi.org/10.1007/bf02486398

Vilela, A.P., Eugênio, T.M.C., Oliveira, F.F., Mendes, J.F., Ribeiro, A.G.C., Vaz, L.E.V.S.B. and Mendes, R.F., 2020. Technological properties of soil-cement bricks produced with iron ore mining waste. Construction and Building Materials, 262, 120883. https://doi.org/10.1016/j.conbuildmat.2020.120883

Descargas

Publicado

2025-10-31

Cómo citar

Ferreira, D. R., Cruz Junior, J. L. da, Silva, L. F., Porto, L. O. R., Carvalho, F. A. de, Cambraia, R. P. y Prat, B. V. (2025) «Correlation between Compressive Strength and Cement Content in Soil-Cement Blocks», International Journal of Geoscience, Engineering and Technology , 12(1), pp. 66–77. doi: 10.70597/ijget.v12i1.678.