Valuation of Lithium Mining Waste for Water Treatment: An Experimental Study and Broader Implications of Residual Aluminum Silicate (Al2SiO5) as an Artificial Zeolite

Autores

DOI:

https://doi.org/10.70597/ijget.v12i1.701

Palavras-chave:

Aluminum silicate, Waste, Water treatment, Artificial zeolite, Turbidity

Resumo

This study explored the potential of residual aluminum silicate (Al2SiO5), a mining byproduct collected from Brazilian Lithium Company (CBL), as a flocculating agent in the treatment of clay particle-laden waters. The experiments evaluated the material's ability to aggregate particles and reduce water turbidity under different conditions, acting as an artificial zeolite. Results demonstrated the effectiveness of residual aluminum silicate in flocculation, outperforming the control treatment. It was observed that the flocculant's performance was influenced by the medium's pH, being more efficient under alkaline conditions. This work suggests that residual aluminum silicate is a promising candidate for water treatment, but highlights the need for further understanding of its action and optimization for large-scale applications.

Referências

Alves, B. da S., Borges, C.P. and Fonseca, F.V. da, 2019. Análise das variáveis do processo de coagulação-floculação para clarificação de água superficial. Dissertation. Universidade Federal do Rio de Janeiro.

Braga, P.F.A. and Sampaio, J.A., 2008. Lítio. In: Rochas e Minerais Industriais no Brasil: usos e especificações. 2nd ed. Rio de Janeiro: CETEM/MCTI, pp. 585-603. Available at: <http://mineralis.cetem.gov.br/handle/cetem/1115> [Accessed 25 May 2025].

Brasil. Ministério da Saúde, 2021. Portaria GM/MS nº 888, de 4 de maio de 2021. Diário Oficial da União, Brasília, DF, 07 mai. 2021, Seção 1, p. 116.

Brazão, A.J. da C., Silva, R.D.R. da and Vivacqua, C.A., 2021. ‪Clarification of spent filter backwash water in water treatment plants by coagulation, flocculation and dissolved air flotation‬. Revista Engenharia Sanitária e Ambiental, 26(5), pp.865-876. https://doi.org/10.1590/S1413-415220180112

Brunhara, G.F. and Braga, P.F.A., 2021. Tecnologias de extração de lítio de pegmatitos. Série Tecnologia Mineral, 104. Rio de Janeiro: CETEM/MCTIC. Available at: <http://mineralis.cetem.gov.br/handle/cetem/2435> [Accessed 25 May 2025].

Circuito Ambiental, 2022. Coagulação e Floculação: Princípios e Aplicações. [online] Available at: <https://www.circuitoambiental.com.br/coagulacao-e-floculacao-principios-e-aplicacoes/> [Accessed 15 October 2025].

Coelho, G.F., 2016. Síntese de Zeólitas a Partir de Resíduos Industriais. PhD thesis. Universidade Federal de Minas Gerais.

Edzwald, J.K., 2011. Water quality and treatment: a handbook on drinking water. 6th ed. Denver, CO: AWWA – American Water Works Association.

Eren, S., Türk, F.N. and Arslanoğlu, H., 2024. Synthesis of zeolite from industrial wastes: a review on characterization and heavy metal and dye removal. Environmental Science and Pollution Research, 31, pp.41791-41823. https://doi.org/10.1007/s11356-024-33863-0

Faria, M.C.S., 2017. Valorização de Resíduos de Mineração para Produção de Materiais Adsorventes. Dissertation. Universidade Federal dos Vales do Jequitinhonha e Mucuri.

Fernandes, N.M.G., Ginoris, Y.P., Rios, R.H.T. and Brandão, C.C.S., 2010. Influência do pH de coagulação e da dose de sulfato de alumínio na remoção de oocistos de Cryptosporidium por filtração direta descendente. Engenharia Sanitária e Ambiental, 15(4), pp.375-384. https://doi.org/10.1590/S1413-41522010000400010

Freitas, M.B., Brilhante, O.M. and Almeida, L.M., 2001. The importance of water testing for public health in two regions in Rio de Janeiro: a focus on fecal coliforms, nitrates, and aluminum. Cadernos de Saúde Pública, 17(3), pp.51-660. https://doi.org/10.1590/S0102-311X2001000300019

Gaudy, A.F. and Gaudy, E.T., 1980. Microbiology for environmental scientists and engineers. New York: McGraw-Hill.

Gregory, J., 2006. Particles in water: properties and processes. 1st ed. Boca Raton: CRC Press.

Ibsaine, F., Azizi, D., Dionne, J., Tran, L.H., Coudert, L., Pasquier, L.-C. and Blais, J.-F., 2024a. Application of aluminosilicate residue-based zeolite from lithium extraction in water treatment. Microporous and Mesoporous Materials, 381, p.113370. https://doi.org/10.1016/j.micromeso.2024.113370

Ibsaine, F., Azizi, D., Dionne, J., Tran, L.H., Coudert, L., Pasquier, L.-C. and Blais, J.-F., 2024b. Scaling up, mass balance and techno-economic study of a hydrothermal process used to synthesize zeolite from aluminosilicate residues obtained from lithium production. Minerals Engineering, 216, p.108841. https://doi.org/10.1016/j.mineng.2024.108841

Ibsaine, F., Azizi, D., Dionne, J., Tran, L.H. and Coudert, L., 2023. Synthesis of zeolites using aluminosilicate residues from the lithium extraction. Research Square. https://doi.org/10.21203/rs.3.rs-2947924/v1

ISO – International Organization for Standardization, 2000. ISO 7027: Water quality – Determination of turbidity. Geneva: ISO.

Izidoro, J.C. and Fungaro, D.A., 2013. Síntese e caracterização de Zeólita pura obtida a partir de cinzas volantes de carvão. Thesis. Instituto de Pesquisas Energéticas e Nucleares. https://doi.org/10.11606/t.85.2013.tde-03042013-092703

Kawamura, S., 1991. Integrated design and operation of water treatment facilities. New York: John Wiley & Sons.

Kim, H., Kim, S., Lee, B., Kim, M., Kim, G. and Kim, C., 2025. Valorization of Na₂SO₄ n wastewater from spent lithium-ion battery recycling using redox-mediated bipolar membrane electrodialysis. Chemical Engineering Journal, 504. https://doi.org/10.1016/j.cej.2024.158834

Kumari, S., Chowdhry, J., Kumar, M. and Garg, M.C., 2024. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. Environmental Research, 260, p.119782. https://doi.org/10.1016/j.envres.2024.119782

Lima Júnior, R.N. and Abreu, F.O.M.S., 2018. Produtos Naturais Utilizados como Coagulantes e Floculantes para Tratamento de Águas: Uma Revisão sobre Benefícios e Potencialidades. Revista Virtual Química, 10(3), pp.709-735.

Lipps, W.C., Braun-Howland, E.B. and Baxter, T.E., 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: APHA – American Public Health Association.

Lee, D., Joo, S.-H., Shin, D.J. and Shin, S.M., 2022. Recovery of Li from lithium aluminum silicate (LAS) glass-ceramics after heat treatment at 1000 °C and Ca salt-assisted water leaching in two stages before and after calcination at 600 °C. Hydrometallurgy, 211, p.105876. https://doi.org/10.1016/j.hydromet.2022.105876

Liu, Y., Ma, J., Lian, L., Wang, X., Zhang, H., Gao, W. and Lou, D., 2021. Flocculation performance of alginate grafted polysilicate aluminum calcium in drinking water treatment. Process Safety and Environmental Protection, 155, pp. 287-294. https://doi.org/10.1016/j.psep.2021.09.012

Lopes, V.S., Silva, L.M.A., Moruzzi, R.B. and Oliveira, A.L., 2020. Study of coagulation/flocculation of water with moderate turbidity in sedimentation and floating by dissolved air. Revista Engenharia Sanitária e Ambiental, 25(04), pp.567-572. https://doi.org/10.1590/S1413-41522020193514

Lottermoser, B.G., 2010. Mine wastes: characterization, treatment and environmental impacts. 3rd ed. Berlin: Springer.

Luz, A.B. and Lins, F.A.F., eds. Rochas e Minerais Industriais: Usos e Especificações. 2nd ed. Rio de Janeiro: CETEM/MCTI, pp.619-634. Available at: <http://mineralis.cetem.gov.br/handle/cetem/522> [Accessed 25 May 2025].

Machado, R.C., Valle, S.F.D., Sena, T.B.M., Perrony, P.E.P., Bettiol, W., and Ribeiro, C., 2024. Aluminosilicate and zeolitic materials synthesis using alum sludge from water treatment plants: Challenges and perspectives. Waste management, 186, pp.94-108. https://doi.org/10.1016/j.wasman.2024.05.046

Magalhães, L.F., Silva, G.R. and Peres, A.E.C., 2022. Zeolite application in wastewater treatment. Adsorption Science & Technology. https://doi.org/10.1155/2022/4544104

Magalhaes, T.S., 2022. Estudo da viabilidade para reciclagem de resíduos de construção civil em Mariana - MG. Undergraduate thesis. Universidade Federal de Ouro Preto.

Michelan, D.C. de G.S., Santos, W.N. de A., Rosa, T.S., Santos, D. de G. and Jesus, R. de C.S. de, 2021. Use of emergent moringa-based coagulant/flocculant for water treatment with verification of composition and toxicity of the produced sludge: water treatment with Moringa and toxicity of the sludge. Engenharia Sanitaria e Ambiental, 26(5), pp.955-963. https://doi.org/10.1590/S1413-415220200314

Muniz, D. and Oliveira-Filho, E., 2008. Metais pesados provenientes de rejeitos de mineração e seus efeitos sobre a saúde e o meio ambiente. Universitas: Ciências da Saúde. 4(1/2), pp.83-100. https://doi.org/10.5102/ucs.v4i1.24

Murray, H.H. ed., 2006. Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays, 2, pp.1-180. https://doi.org/10.1016/S1572-4352(06)02001-0

Oliveira, M.P., 2024. O avanço da exploração do lítio no Vale do Jequitinhonha (MG) e a reprodução das desigualdades e dependências internacionais. Carta Internacional, 19(1), p.e1416. https://doi.org/10.21530/ci.v19n1.2024.1416

Oliveira, M.S.M., 2016. Síntese de zeólitas a partir de um resíduo sílico-aluminoso gerado na extração do lítio do espodumênio. Dissertação. Universidade Federal do Rio Grande do Norte.

Peñafiel-Villarreal, F. and Martínez-Mañez, R., 2019. Sintesis de Zeolitas utilizando como materia prima lodos de los procesos de anodizado de aluminio. Revista Tecnología en Marcha, 32(3), pp.12–23. http://dx.doi.org/10.18845/tm.v32i2.4476

Santos, L., Nascimento, R.M. and Pergher, S.B.C., 2018. Processo para obtenção dos materiais LPM-15, LPM-16 e LPM-17, com topologias zeolíticas LTA, FAU e MOR, respectivamente, como subproduto da extração do lítio a partir do beta-espodumênio. Brasil. Pat. BR1020180163124.

Santos, M.S. and Valverde, K.C., 2024. Avaliação de Diferentes Coagulantes Naturais para Obtenção de Água Potável. Revista de Estudos Ambientais, 25(1), pp.22–32. https://doi.org/10.7867/1983-1501.2023v25n1p22-32

Shin, J.H., Kim, S.H., Yoo, C.H., Lee, H.J., Nguyen, B.T.D., Lee, G.G., Kim, J.F. and Lee, J.S., 2024. Valorization of battery manufacturing wastewater: Recovery of high-value metal ions through reaction-enhanced membrane cascade. Chemical Engineering Journal, 493, p.152247. https://doi.org/10.1016/j.cej.2024.152247

Snoeyink, V.L. and Jenkins, D., 1980. Water chemistry. New York: John Wiley & Sons.

Stem, D.K., Bhoumik, N.C., Sekhon, E.K. and Nyman, M., 2025. Production of Potassium Sulfate through Valorization of Zero Liquid Discharge Mining Waste from Lithium Clays. ACS Sustainable Resource Management, 2(6), 1096-1103. https://doi.org/10.1021/acssusresmgt.5c00100

Stumm, W. and Morgan, J.J., 1995. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley-Interscience.

Tao, X., Li, B., Zhang, H., Peng, A., Wang, J., Zheng, Y., Yang, L., Luo, X., Luo, S. and Shao, P., 2024. High-efficiency, environment-friendly extraction of lithium from waste LAS glass-ceramics by roasting with KOH at low temperature. Resources, Conservation and Recycling, 209, p.107775. https://doi.org/10.1016/j.resconrec.2024.107775

Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F., Abu-Orf, M., Bowden, G. and Pfrang, W., 2014. Wastewater engineering: treatment and resource recovery. 5th ed. New York: McGraw-Hill.

USGS – United States Geological Survey, 2023. Mineral commodity summaries 2023. Reston, VA: USGS. https://doi.org/10.3133/mcs2023

Vaz, L.G. de L., Klen, M.R.F., Veit, M.T., Silva, E.A. da, Barbiero, T.A. and Bergamasco, R., 2010. Avaliação da eficiência de diferentes agentes coagulantes na remoção de cor e turbidez em efluente de galvanoplastia. Eclética Química, 35(4), pp.45-54. https://doi.org/10.1590/S0100-46702010000400006

Vera, M.L., Torres, W.R., Galli, C.I., Chagnes, A. and Flexer, V., 2023. Environmental impact of direct lithium extraction from brines. Nature Reviews Earth & Environment, 4, pp.149-165. https://doi.org/10.1038/s43017-022-00387-5

Yang, Z., Long, Y., Yang, X., Liu, J. and Zhu, G., 2024. Preparation and application of polymeric silicate coagulant: a short review. Environmental Engineering Research, 29(5), p.230672. https://doi.org/10.4491/eer.2023.672

Downloads

Publicado

2025-10-31

Como Citar

Thiago Heron, T. H. de Q., Silva, L. G. de C., Silva, L. F. da, Faria, M. C. da S. e Costa, A. S. V. da (2025) “Valuation of Lithium Mining Waste for Water Treatment: An Experimental Study and Broader Implications of Residual Aluminum Silicate (Al2SiO5) as an Artificial Zeolite”, International Journal of Geoscience, Engineering and Technology, 12(1), p. 1–14. doi: 10.70597/ijget.v12i1.701.

Artigos mais lidos pelo mesmo(s) autor(es)