Sistema de aeronaves remotamente pilotadas na identificação e monitoramento de espécies invasoras: uma revisão
DOI:
https://doi.org/10.70597/vozes.v12i26.1002Keywords:
Plataformas, UAS, UAV, SensoresAbstract
A incidência de espécies invasoras tem aumentado nos últimos anos, causando preocupações significativas devido aos impactos econômicos e à perda de biodiversidade. O monitoramento precoce dessas invasões é essencial para permitir intervenções antes que danos irreversíveis ocorram. Nesse contexto, o uso de tecnologias inovadoras, como aeronaves remotamente pilotadas (RPAs), tem se mostrado promissor por sua relação custo-benefício e eficiência. Este estudo teve como objetivo realizar uma revisão sistemática e bibliométrica para avaliar a aplicação de RPAs na detecção e monitoramento de espécies invasoras. Foram analisados 65 estudos extraídos das bases de dados Scopus e Web of Science, coletando-se informações sobre as espécies invasoras monitoradas, plataformas de RPAs utilizadas, tipos de sensores, e métodos de processamento de dados empregados. Os resultados indicam um aumento significativo no número de publicações sobre o tema entre 2015 e 2021, com a maioria das pesquisas realizadas na Europa (37,5%), América do Norte (26,5%) e Ásia (15,6%). A plataforma mais utilizada foi a de multirrotor, equipada com sensores RGB, enquanto os algoritmos mais frequentes para processamento de dados foram Random Forest (RF), Convolutional Neural Networks (CNN) e Support Vector Machines (SVM). Notou-se uma predominância de estudos focados em espécies herbáceas, e todos os trabalhos analisados relataram alta eficiência na detecção e monitoramento de invasões biológicas.
References
ABEYSINGHE, T.; SIMIC MILAS, A.; AREND, K.; HOHMAN, B.; REIL, P.;
GREGORY, A.; VÁZQUEZ-ORTEGA, A. Mapping invasive Phragmites australis in the Old Woman Creek estuary using UAV remote sensing and machine learning classifiers. Remote Sensing, v. 11, n. 11, p. 1380, 2019.
ADELINO, J. R. P.; HERINGER, G.; DIAGNE, C.; COURCHAMP, F.; DEL BIANCO
FARIA, L.; ZENNI, R. D. The economic costs of biological invasions in Brazil: a first assessment. NeoBiota, v. 67, p. 349-374, 2021.
AHMED, S.; NICHOLSON, C. E.; MUTO, P.; PERRY, J. J.; DEAN, J. R. The use of
an unmanned aerial vehicle for tree phenotyping studies. Separations, v. 8, n. 9, p. 160, 2021.
AKAMATSU, Y.; GOTO, M.; INUI, R.; KOMURO, T.; NAGANO, M.; MINAMOTO, T.
Broad-scale detection of environmental DNA for an invasive macrophyte and the relationship between DNA concentration and coverage in rivers. Biological Invasions,
v. 23, n. 2, p. 507-520, 2021.
ALVAREZ-TABOADA, F.; PAREDES, C.; JULIÁN-PELAZ, J. Mapping of the invasive
species Hakea sericea using unmanned aerial vehicle (UAV) and WorldView-2 imagery and an object-oriented approach. Remote Sensing, v. 9, n. 9, p. 913, 2017.
ANDERSON, C. J.; HEINS, D.; PELLETIER, K. C.; BOHNEN, J. L.; KNIGHT, J. F.
Mapping invasive Phragmites australis using unoccupied aircraft system imagery, canopy height models, and synthetic aperture radar. Remote Sensing, v. 13, n. 16, p. 3303, 2021.
BARON, J.; HILL, D. J. Monitoring grassland invasion by spotted knapweed (Centaurea maculosa) with RPAS-acquired multispectral imagery. Remote Sensing of Environment, v. 249, p. 112008, 2020.
BARTLETT, J. C.; WESTERGAARD, K. B.; PAULSEN, I. M.; WEDEGÄRTNER, R.
E.; WILKEN, F.; RAVOLAINEN, V. Moving out of town? The status of alien plants in high-Arctic Svalbard, and a method for monitoring of alien flora in high-risk, polar environments. Ecological Solutions and Evidence, v. 2, n. 1, e12056, 2021.
BAXTER, P. W.; HAMILTON, G. Learning to fly: integrating spatial ecology with unmanned aerial vehicle surveys. Ecosphere, v. 9, n. 4, e02194, 2018.
BENJAMIN, A. R.; ABD-ELRAHMAN, A.; GETTYS, L. A.; HOCHMAIR, H. H.;
THAYER, K. Monitoring the efficacy of Crested Floatingheart (Nymphoides cristata) management with object-based image analysis of UAS imagery. Remote Sensing, v. 13, n. 4, p. 830, 2021.
BOGDAN, A.; LEVIN, S. C.; SALGUERO-GÓMEZ, R.; KNIGHT, T. M. Demographic
analysis of an Israeli Carpobrotus population. PLoS One, v. 16, n. 4, e0250879, 2021.
BOLCH, E. A.; HESTIR, E. L.; KHANNA, S. Performance and feasibility of drone- mounted imaging spectroscopy for invasive aquatic vegetation detection. Remote Sensing, v. 13, n. 4, p. 582, 2021.
BROOKS, C.; WEINSTEIN, C.; POLEY, A.; GRIMM, A.; MARION, N.; BOURGEAU-
CHAVEZ, L.; KOWALSKI, K. Using uncrewed aerial vehicles for identifying the extent of invasive Phragmites australis in treatment areas enrolled in an adaptive management program. Remote Sensing, v. 13, n. 10, p. 1895, 2021.
BURGUÉS, J.; MARCO, S. Environmental chemical sensing using small drones: a review. Science of The Total Environment, v. 748, p. 141172, 2020.
CABEZAS, M.; KENTSCH, S.; TOMHAVE, L.; GROSS, J.; CACERES, M. L. L.;
DIEZ, Y. Detection of invasive species in wetlands: practical DL with heavily imbalanced data. Remote Sensing, v. 12, n. 20, p. 3431, 2020.
CASTRO-DÍEZ, P.; VAZ, A. S.; SILVA, J. S.; VAN LOO, M.; ALONSO, Á.; APONTE,
C.; GODOY, O. Global effects of non-native tree species on multiple ecosystem services. Biological Reviews, v. 94, n. 4, p. 1477-1501, 2019.
CHABOT, D.; DILLON, C.; AHMED, O.; SHEMROCK, A. Object-based analysis of UAS imagery to map emergent and submerged invasive aquatic vegetation: a case study. Journal of Unmanned Vehicle Systems, v. 5, n. 1, p. 27-33, 2016.
CHABOT, D.; DILLON, C.; SHEMROCK, A.; WEISSFLOG, N.; SAGER, E. P. An
object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS International Journal of Geo- Information, v. 7, n. 8, p. 294, 2018.
DASH, J. P.; WATT, M. S.; PAUL, T. S.; MORGENROTH, J.; PEARSE, G. D. Early
detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data. Remote Sensing, v. 11, n. 15, p. 1812, 2019.
DE LA CUEVA, A. V.; MONTES, F.; AULLÓ, I. The effect of flowering stage on distribution modelling performance: A case study of Acacia dealbata using maximum entropy modelling and RPA images. Forest Systems, v. 31, n. 2, p. 3, 2022.
DE LANGE, W. J.; VAN WILGEN, B. W. An economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa. Biological Invasions, v. 12, n. 12, p. 4113- 4124, 2010.
DE SA, N. C.; CASTRO, P.; CARVALHO, S.; MARCHANTE, E.; LÓPEZ-NÚÑEZ, F.
A.; MARCHANTE, H. Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Frontiers in Plant Science,
v. 9, p. 293, 2018.
DEL CERRO, J.; CRUZ ULLOA, C.; BARRIENTOS, A.; DE LEÓN RIVAS, J.
Unmanned aerial vehicles in agriculture: A survey. Agronomy, v. 11, n. 2, p. 203, 2021.
DENNILL, G. B.; DONNELLY, D.; STEWART, K.; IMPSON, F. A. C. Insect agents
used for the biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Fabaceae) in South Africa. Insect Agents Used for the Biological Control of Australian Acacia Species and Paraserianthes lophantha (Willd.) Nielsen (Fabaceae) in South Africa, p. 45-54, 1999.
DOS SANTOS, L. M.; ARAÚJO, G.; FERRAZ, S.; BARBOSA, B. D. S.; ANDRADE,
A. D. Use of remotely piloted aircraft in precision agriculture: A review. Dyna, v. 86, n. 210, p. 284-291, 2019.
EUGENIO, F. C.; SCHONS, C. T.; MALLMANN, C. L.; SCHUH, M. S.; FERNANDES,
P.; BADIN, T. L. Remotely piloted aircraft systems and forests: A global state of the art and future challenges. Canadian Journal of Forest Research, v. 50, n. 8, p. 705– 716, 2020.
FLEMING, J. P.; DIBBLE, E. D.; MADSEN, J. D.; WERSAL, R. M. Investigation of
Darwin’s naturalization hypothesis in invaded macrophyte communities. Biological Invasions, v. 17, n. 5, p. 1519-1531, 2015.
GAO, Z.; LIU, S.; LI, W. Biological control for predation invasion based on pair approximation. Mathematical Biosciences and Engineering, v. 19, n. 10, p. 10252- 10274, 2022.
GBIF. Global Biodiversity Information Facility. Disponível em: https://www.gbif.org/es/. Acesso em dezembro de 2022.
GONÇALVES, C.; SANTANA, P.; BRANDÃO, T.; GUEDES, M. Automatic detection
of Acacia longifolia invasive species based on UAV-acquired aerial imagery.
Information Processing in Agriculture, v. 9, n. 2, p. 276-287, 2022.
GRABIĆ, J.; BENKA, P.; LJEVNAIĆ-MAŠIĆ, B.; VASIĆ, I.; BEZDAN, A. Spatial
distribution assessment of invasive alien species Amorpha fruticosa L. by UAV-based remote sensing in the Special Nature Reserve Obedska Bara, Serbia. Environmental Monitoring and Assessment, v. 194, n. 9, p. 1-11, 2022.
GRANSHAW, S. I. RPV, UAV, UAS, RPAS… or just drone? Photogramm, v. 33, p. 160–170, 2018.
GRÄNZIG, T.; FASSNACHT, F. E.; KLEINSCHMIT, B.; FÖRSTER, M. Mapping the
fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach. International Journal of Applied Earth Observation and Geoinformation, v. 96, p. 102281, 2021.
GUILLERME, S.; BARCAT, H.; DE MUNNIK, N.; MAIRE, E.; MARAIS-SICRE, C.
Evolution of traditional agroforestry landscapes and development of invasive species: lessons from the Pyrenees (France). Sustainability Science, v. 15, n. 5, p. 1285- 1299, 2020.
GUTIÉRREZ-LAZCANO, L.; CAMACHO-BELLO, C. J.; CORNEJO-VELAZQUEZ, E.;
ARROYO-NÚÑEZ, J. H.; CLAVEL-MAQUEDA, M. Cuscuta spp. segmentation based on unmanned aerial vehicles (UAVs) and orthomosaics using a U-Net Xception-style model. Remote Sensing, v. 14, n. 17, p. 4315, 2022.
HOFFMANN, H.; JENSEN, R.; THOMSEN, A.; NIETO, H.; RASMUSSEN, J.;
FRIBORG, T. Crop water stress maps for an entire growing season from visible and thermal UAV imagery. Biogeosciences, v. 13, n. 24, p. 6545-6563, 2016.
HOLDEN, P. B.; REBELO, A. J.; NEW, M. G. Mapping invasive alien trees in water towers: A combined approach using satellite data fusion, drone technology and expert engagement. Remote Sensing Applications: Society and Environment, v. 21,
p. 100448, 2021.
HORTON, T. W.; HAUSER, N.; CASSEL, S.; KLAUS, K. F.; FETTERMANN, T.; KEY,
N. Doctor Drone: non-invasive measurement of humpback whale vital signs using unoccupied aerial system infrared thermography. Frontiers in Marine Science, v. 6, p. 466, 2019.
HUNG, C.; XU, Z.; SUKKARIEH, S. Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV. Remote Sensing, v. 6, n. 12, p. 12037-12054, 2014.
JACKSON, M.; PORTILLO-QUINTERO, C.; COX, R.; RITCHIE, G.; JOHNSON, M.;
HUMAGAIN, K.; SUBEDI, M. R. Season, classifier, and spatial resolution impact honey mesquite and yellow bluestem detection using an unmanned aerial system. Rangeland Ecology & Management, v. 73, n. 5, p. 658-672, 2020.
JAMES, K.; BRADSHAW, K. Detecting plant species in the field with deep learning and drone technology. Methods in Ecology and Evolution, v. 11, n. 11, p. 1509-1519, 2020.
JIMÉNEZ LÓPEZ, J.; MULERO-PÁZMANY, M. Drones for conservation in protected areas: present and future. Drones, v. 3, n. 1, p. 10, 2019.
JOCHEMS, L. W.; BRANDT, J.; MONKS, A.; CATTau, M.; KOLARIK, N.; TALLANT,
J.; LISHAWA, S. Comparison of different analytical strategies for classifying invasive wetland vegetation in imagery from unpiloted aerial systems (UAS). Remote Sensing,
v. 13, n. 23, p. 4733, 2021.
KATTENBORN, T.; EICHEL, J.; WISER, S.; BURROWS, L.; FASSNACHT, F. E.;
SCHMIDTLEIN, S. Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote Sensing in Ecology and Conservation, v. 6, n. 4, p. 472-486, 2020.
KATTENBORN, T.; LOPATIN, J.; FÖRSTER, M.; BRAUN, A. C.; FASSNACHT, F. E.
UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, v. 227, p. 61-73, 2019.
KUCHARCZYK, M.; HUGENHOLTZ, C. H. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sensing of Environment, v. 264, p. 112577, 2021.
LAKSHMAN, S. A.; EBENEZER, D. Integration of internet of things and drones and its future applications. Materials Today: Proceedings, v. 47, p. 944-949, 2021.
LAM, O. H. Y.; DOGOTARI, M.; PRÜM, M.; VITHLANI, H. N.; ROERS, C.;
MELVILLE, B.; BECKER, R. An open source workflow for weed mapping in native grassland using unmanned aerial vehicle: Using Rumex obtusifolius as a case study. European Journal of Remote Sensing, v. 54, n. sup1, p. 71-88, 2021.
LASO, F. J.; BENÍTEZ, F. L.; RIVAS-TORRES, G.; SAMPEDRO, C.; ARCE-
NAZARIO, J. Land cover classification of complex agroecosystems in the non- protected highlands of the Galapagos Islands. Remote Sensing, v. 12, n. 1, p. 65, 2019.
LELÉGARD, L.; LE BRIS, A.; GIORDANO, S. Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, p. 1217-1222, 2022.
LI, J.; LI, D.; ZHANG, G.; XU, H.; ZENG, R.; LUO, W.; YU, Y. Study on extraction of
foreign invasive species Mikania micrantha based on unmanned aerial vehicle (UAV) hyperspectral remote sensing. In Fifth Symposium on Novel Optoelectronic Detection Technology and Application, v. 11023, p. 597-605, 2019.
LINCHANT, J.; LISEIN, J.; SEMEKI, J.; LEJEUNE, P.; VERMEULEN, C. Are
unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review, v. 45, n. 4, p. 239-252, 2015.
LIU, K.; WANG, A.; ZHANG, S.; ZHU, Z.; BI, Y.; WANG, Y.; DU, X. Tree species
diversity mapping using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in a subtropical forest invaded by moso bamboo (Phyllostachys edulis). International Journal of Applied Earth Observation and Geoinformation, v. 104, p. 102587, 2021.
LIZZIO, F. F.; CAPELLO, E.; GUGLIERI, G. Uma revisão das implementações de UAV multiagentes baseadas em consenso. Journal of Intelligent & Robotic Systems,
v. 106, n. 2, p. 1-10, 2022.
LOPATIN, J.; DOLOS, K.; KATTENBORN, T.; FASSNACHT, F. E. How canopy
shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote Sensing in Ecology and Conservation, v. 5, n. 4, p. 302-317, 2019.
LV, W.; WANG, X. Overview of hyperspectral image classification. Journal of Sensors, v. 2020, p. 1-14, 2020.
MACKENZIE, D. Sick to death. New Scientist, v. 167, n. 2250, p. 32-35, 2000.
MADSEN, D. J. D. Eurasian watermilfoil invasions and management across the United States. The Journal of Marine Education, v. 21, n. 2, p. 15-23, 2005.
MADURAPPERUMA, B.; LAMPING, J.; MCDERMOTT, M.; MURPHY, B.;
MCFARLAND, J.; DEYOUNG, K.; MITCHELL, S. Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote Sensing, v. 12, n. 10, p. 1536, 2020.
MAFAÑA, M.; TSELE, P.; BOTAI, J. O.; MANYAMA, P.; CHIRIMA, G. J.; MONATE,
T. Radiometric calibration framework for ultra-high-resolution UAV-derived orthomosaics for large-scale mapping of invasive alien plants in semi-arid woodlands: Harrisia pomanensis as a case study. International Journal of Remote Sensing, v. 39, n. 15-16, p. 5119-5140, 2018.
MAFAÑA, M.; TSELE, P.; BOTAI, J.; MANYAMA, P.; SWART, B.; MONATE, T.
Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study. ISPRS Journal of Photogrammetry and Remote Sensing, v. 129, p. 1-11, 2017.
MARCHANTE, H.; FREITAS, H.; HOFFMANN, J. H. Seed ecology of an invasive alien species, Acacia longifolia (Fabaceae), in Portuguese dune ecosystems. American Journal of Botany, v. 97, n. 11, p. 1780-1790, 2010.
MARTIN, F. M.; MÜLLEROVÁ, J.; BORGNIET, L.; DOMMANGET, F.; BRETON, V.;
EVETTE, A. Using single-and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Remote Sensing, v. 10, n. 10, p. 1662, 2018.
MARZIALETTI, F.; DI FEBBRARO, M.; FRATE, L.; DE SIMONE, W.; ACOSTA, A. T.
R.; CARRANZA, M. L. Synergetic use of unmanned aerial vehicle and satellite images for detecting non-native tree species: An insight into Acacia saligna invasion in the Mediterranean coast. Frontiers in Environmental Science, v. 1224, p. 1-14, 2022.
MARZIALETTI, F.; FRATE, L.; DE SIMONE, W.; FRATTAROLI, A. R.; ACOSTA, A.
T. R.; CARRANZA, M. L. Unmanned Aerial Vehicle (UAV)-based mapping of Acacia saligna invasion in the Mediterranean coast. Remote Sensing, v. 13, n. 17, p. 3361, 2021.
MATHESON, P.; MCGaughRAN, A. Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Scientific Reports, v. 12, n. 1, p. 1-8, 2022.
MAZOR, T.; DOROPOULOS, C.; SCHWARZMUELLER, F.; GLADISH, D. W.;
KUMARAN, N.; MERKEL, K.; GAGIC, V. Global mismatch of policy and research on drivers of biodiversity loss. Nature Ecology & Evolution, v. 2, n. 7, p. 1071-1074, 2018.
MEDAK, J.; PERIĆ, S.; ZORIĆ, N.; SIROVICA, I. First Results of Monitoring the New Invasive Species Prunus serotina Ehrh. Population inside the Regeneration Area of Common Oak-Hornbeam Forest in Western Croatia. South-East European Forestry: SEEFOR, v. 12, n. 2, p. 135-142, 2021.
MICHEZ, A.; PIÉGAY, H.; JONATHAN, L.; CLAESSENS, H.; LEJEUNE, P. Mapping
of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. International Journal of Applied Earth Observation and Geoinformation, v. 44, p. 88-94, 2016.
MOHLER, R. L.; MORSE, J. M. Using UAV imagery to map invasive Phragmites australis on the Crow Island State Game Area, Michigan, USA. Wetlands Ecology and Management, v. 30, n. 6, p. 1213-1229, 2022.
MÜLLEROVÁ, J.; BRŮNA, J.; BARTALOŠ, T.; DVOŘÁK, P.; VÍTKOVÁ, M.; PYŠEK,
P. Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring. Frontiers in Plant Science, v. 8, p. 887, 2017.
NI, M.; DEANE, D. C.; LI, S.; WU, Y.; SUI, X.; XU, H.; FANG, S. Invasion success
and impacts depend on different characteristics in non‐native plants. Diversity and Distributions, v. 27, n. 7, p. 1194-1207, 2021.
NOVOA, A.; RICHARDSON, D. M.; PYŠEK, P.; MEYERSON, L. A.; BACHER, S.;
CANAVAN, S.; WILSON, J. R. Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, v. 22, n. 5, p. 1801-1820, 2020.
OLDELAND, J.; REVERMANN, R.; LUTHER-MOSEBACH, J.; BUTTSCHARDT, T.;
LEHMANN, J. R. New tools for old problems—comparing drone-and field-based assessments of a problematic plant species. Environmental Monitoring and Assessment, v. 193, n. 2, p. 1-14, 2021.
PÁDUA, L.; ANTÃO-GERALDES, A. M.; SOUSA, J. J.; RODRIGUES, M. Â.;
OLIVEIRA, V.; SANTOS, D.; CASTRO, J. P. Water Hyacinth (Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones, v. 6, n. 2, p. 47, 2022.
PAPP, L.; VAN LEEUWEN, B.; SZILASSI, P.; TOBAK, Z.; SZATMÁRI, J.; ÁRVAI, M.;
PÁSZTOR, L. Monitoring invasive plant species using hyperspectral remote sensing data. Land, v. 10, n. 1, p. 29, 2021.
PERROY, R. L.; SULLIVAN, T.; STEPHENSON, N. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS Journal of Photogrammetry and Remote Sensing, v. 125, p. 174-183, 2017.
PURI, V.; NAYYAR, A.; RAJA, L. Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, v. 20, n. 4, p. 507-518, 2017.
QIAN, W.; HUANG, Y.; LIU, Q.; FAN, W.; SUN, Z.; DONG, H.; QIAO, X. UAV and a
deep convolutional neural network for monitoring invasive alien plants in the wild.
Computers and Electronics in Agriculture, v. 174, p. 105519, 2020.
RODRIGUEZ III, R.; PERROY, R. L.; LEARY, J.; JENKINS, D.; PANOFF, M.;
MANDEL, T.; PEREZ, P. Comparing interpretation of high-resolution aerial imagery by humans and artificial intelligence to detect an invasive tree species. Remote Sensing, v. 13, n. 17, p. 3503, 2021.
SANDINO, J.; GONZALEZ, F.; MENGERSEN, K.; GASTON, K. J. UAVs and
machine learning revolutionising invasive grass and vegetation surveys in remote arid lands. Sensors, v. 18, n. 2, p. 605, 2018.
SHARMA, G. P.; ESLER, K. J.; BLIGNAUT, J. N. Determining the relationship between invasive alien species density and a country's socio-economic status. South African Journal of Science, v. 106, n. 3, p. 1-6, 2010.
SHEYKHMROUSA, M.; MAHDIANPARI, M.; GHANBARI, H.;
MOHAMMADIMANESH, F.; GHAMISI, P.; HOMAYOUNI, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 13, p. 6308-6325, 2020.
SLADONJA, B.; DAMIJANIĆ, D.; KRAPAC, M.; UZELAC, M.; LINIĆ, I.; POLJUHA, D.
Development of drone-based methodology for inventory and monitoring invasive plants along river banks in Croatia. Management of Biological Invasions, v. 13, n. 4,
p. 679-689, 2022.
SMIGAJ, M.; GAULTON, R.; SUAREZ, J. C.; BARR, S. L. Use of miniature thermal cameras for detection of physiological stress in conifers. Remote Sensing, v. 9, n. 9,
p. 957, 2017.
SOLFIYENI, S.; MUKHTAR, E.; SYAMSUARDI, S.; CHAIRUL, C. Distribution of
invasive alien plant species, Bellucia pentamera, in forest conservation of oil palm plantation, West Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, v. 23, n. 7, p. 1-7, 2022.
STRANDBURG-PESHKIN, A.; FARINE, D. R.; CROFOOT, M. C.; COUZIN, I. D.
Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. Elife, v. 6, p. e19505, 2017.
SUTHERST, R. W. The vulnerability of animal and human health to parasites under global change. International Journal for Parasitology, v. 31, n. 9, p. 933-948, 2001.
TAY, J. Y.; ERFMEIER, A.; KALWIJ, J. M. Reaching new heights: can drones replace current methods to study plant population dynamics?. Plant Ecology, v. 219, n. 10, p. 1139-1150, 2018.
THEEL, H. J.; DIBBLE, E. D. An experimental simulation of an exotic aquatic macrophyte invasion and its influence on foraging behavior of bluegill. Journal of Freshwater Ecology, v. 23, n. 1, p. 79-89, 2008.
TIAN, Y.; ZHANG, Q.; HUANG, H.; HUANG, Y.; TAO, J.; ZHOU, G.; LIN, J.
Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River estuary, Guangxi, China. Ecological Indicators, v. 136, p. 108694, 2022.
TORRESAN, C.; BERTON, A.; CAROTENUTO, F.; DI GENNARO, S. F.; GIOLI, B.;
MATESE, A.; WALLACE, L. Forestry applications of UAVs in Europe: A review.
International Journal of Remote Sensing, v. 38, n. 8-10, p. 2427-2447, 2017.
USTYUZHANIN, A.; INTREŠ, J.; SCHIRRMANN, M.; CHOCHLOV, N.; DAMMER, K.
H. Identifizierung von Beifußblättriger Ambrosie (Ambrosia artemisiifolia) mittels Bildverarbeitung in einem Winterroggenfeld. Gesunde Pflanzen, v. 67, n. 4, p. 165- 173, 2015.
VAN KLEUNEN, M.; WEBER, E.; FISCHER, M. A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, v. 13, n. 2, p. 235- 245, 2010.
VAN WILGEN, B. W.; WANNEBURGH, A.; WILSON, J. R. Uma revisão de duas
décadas de apoio do governo para o gerenciamento de invasões de plantas alienígenas na África do Sul. Conservation Biology, v. 274, p. 109741, 2022.
VILÀ, M.; PYŠEK, P.; HULME, P. E.; SIMBERLOFF, D.; BACHER, S.; BLACKBURN,
T. M.; CARLTON, J. T. Scientists' warning on invasive alien species. Biological Reviews, v. 95, n. 6, p. 1511-1534, 2020.
WANG, Q.; CHENG, M.; XIAO, X.; YUAN, H.; ZHU, J.; FAN, C.; ZHANG, J. An
image segmentation method based on deep learning for damage assessment of the invasive weed Solanum rostratum Dunal. Computers and Electronics in Agriculture,
v. 188, p. 106320, 2021.
WEISBERG, P. J.; DILTS, T. E.; GREENBERG, J. A.; JOHNSON, K. N.; PAI, H.;
SLADek, C.; READY, A. Phenology-based classification of invasive annual grasses to the species level. Remote Sensing of Environment, v. 263, p. 112568, 2021.
WESTPHAL, M. I.; BROWNE, M.; MACKINNON, K.; NOBLE, I. The link between
international trade and the global distribution of invasive alien species. Biological Invasions, v. 10, n. 4, p. 391-398, 2008.
WIJESINGHA, J.; ASTOR, T.; SCHULZE-BRÜNINGHOFF, D.; WACHENDORF, M.
Mapping invasive Lupinus polyphyllus Lindl. in semi-natural grasslands using object- based image analysis of UAV-borne images. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, v. 88, n. 5, p. 391-406, 2020.
WU, D.; SUN, D. W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals. Innovative Food Science & Emerging Technologies, v. 19, p. 1-14, 2013.
WU, Z.; NI, M.; HU, Z.; WANG, J.; LI, Q.; WU, G. Mapping invasive plant with UAV- derived 3D mesh model in mountain area—A case study in Shenzhen Coast, China. International Journal of Applied Earth Observation and Geoinformation, v. 77, p. 129- 139, 2019.
XIE, C.; YANG, C. A review on plant high-throughput phenotyping traits using UAV- based sensors. Computers and Electronics in Agriculture, v. 178, p. 105731, 2020.
ZHANG, X.; YUAN, Y.; ZHU, Z.; MA, Q.; YU, H.; LI, M.; SUN, Y. Predicting the
Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sensing, v. 13, n. 24, p. 5129, 2021.
ZHOU, Z.; YANG, Y.; CHEN, B. Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data. Aquatic Botany, v. 144, p. 38-45, 2018.
ZHU, X.; MENG, L.; ZHANG, Y.; WENG, Q.; MORRIS, J. Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing. Remote Sensing, v. 11, n. 10, p. 1208, 2019.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A Revista proporciona acesso público - Open Access - a todo seu conteúdo protegidos pela Licença Creative Commons (CC-BY).





