Morfometria da copa e fuste da arborização urbana de São João Evangelista-MG, Brasil
DOI:
https://doi.org/10.5281/zenodo.13946242Palavras-chave:
paisagem urbana, regressão, relação interdimensional, tendência sigmoidalResumo
Investigações científicas sobre a morfometria da copa e fuste de árvores subsidiam o planejamento e gerenciamento da arborização urbana, importante para a sustentabilidade ambiental de cidades. O objetivo deste trabalho foi avaliar a eficiência da modelagem de relações morfométricas de copa e fuste da arborização urbana do município de São João Evangelista-MG, empregando modelos de regressão não lineares. O inventário da arborização consistiu na amostragem aleatória de árvores em diferentes vias e praças públicas do município. A altura total, altura de inserção da copa, diâmetro à altura do solo, proporção e área de projeção da copa aumentaram à medida que fustes se tornaram mais grossos. O decrescimento com o aumento do DAP foi observado apenas para o índice de saliência e grau de esbeltez. Relações morfométricas podem ser estimadas com precisão por modelos de regressão não linear de característica sigmoidal. Informações sobre tendências do estoque de crescimento morfométrico de árvores em altura total, altura de inserção da copa, área de projeção e raio da copa são úteis para definições do local ideal de plantio em áreas urbanas e de eventuais intervenções silviculturais.
Referências
ABNT - Associação Brasileira de Normas Técnicas. (2012). NBR – 15688: Redes de distribuição aéreas de energia elétrica com condutores nus. Rio de Janeiro. 154p.
Abrantes, K. K. B.; Paiva, L. M.; Almeida, R. G., Urbano, E.; Ferreira, A. D.; Mazucheli, J. (2019). Modeling the individual height and volume of two integrated crop-livestock-forest systems of Eucalyptus spp. in the Brazilian Savannah. Acta Scientiarum, 41, p. 1-8. https://doi.org/10.4025/actasciagron.v41i1.42626
Angeoletton, F.; Fellowes, M. D. E.; Santos, J. W. M. C. (2018). Counting Brazil’s urban trees will help make Brazil’s urban trees count. Journal of Forestry, 116 (5), p. 489-490. https://doi.org/10.1093/jofore/fvy026
Brandão, I. M.; Gomes, L. B.; Silva, N. C. A. R.; Ferraro, A. C.; Silva, A. G.; Gonçalves, F. G. (2011). Análise quali-quantitativa da arborização urbana do município de São João Evangelista-MG. Revista da Sociedade Brasileira de Arborização Urbana, 6 (4), p. 158-174. http://dx.doi.org/10.5380/revsbau.v6i4.66494
Campos. J. C. C.; Leite, H. G. (2017). Mensuração Florestal: perguntas e respostas. 5. ed. Viçosa MG: Ed. UFV. 636p.
Canetti, A.; Mattos, P. P.; Braz, E. M.; Pellico Netto, S. (2017). Life pattern of urban trees: a growth-modelling approach. Urban Ecosystems, 20, p. 1057-1068. https://doi.org/10.1007/s11252-017-0659-0
Cao, L.; Shi, P.; Li, L.; Chen, G. (2019). A new flexible sigmoidal growth model. Symmetry, 11 (204), p. 1-16. https://doi.org/10.3390/sym11020204
Cerqueira, C. L.; Môra, R.; Tonini, H. (2017). Forma do fuste de eucalipto em diferentes arranjos de plantio e espaçamentos. Advances in Forestry Science, 4 (3), p. 137-141. https://doi.org/10.34062/afs.v4i3.5073
Costa, E. A.; Finger, C. A. G. (2017). Efeito da competição nas relações dimensionais de Araucária. Floresta e Ambiente, 24. https://doi.org/10.1590/2179-8087.014515
Costa, E. A.; Finger, C. A. G.; Fleig, F. D. (2016). Influência da posição social nas relações morfométricas de Araucaria angustifolia. Ciência Florestal, 26 (1), p. 225-234. https://doi.org/10.5902/1980509821116
Durlo, M. A.; Denardi, L. (1998). Morfometria de Cabralea canjerana, em mata secundária nativa do Rio Grande do Sul. Ciência Florestal, 8 (1), p. 55-66. https://doi.org/10.5902/19805098351
Fey, R.; Malavasi, U. C.; Malavasi, M. M.; Schulz, D. G.; Dranski, J. A. L. (2014). Relações interdimensionais e produtividade de pinhão-manso (Jatropha curcas L.) em sistema silvipastoril. Semina, 35 (2), p. 613-624. https://doi.org/10.5433/1679-0359.2014v35n2p613
Hilbert, D. R.; North, E. A.; Hauer, R. J.; Koeser, A. K.; Mclean, D. C.; Northrop, R.; Andreu, M.; Parbs, S. (2020). Predicting trunk flare diameter to prevent tree damage to infrastructure. Urban Forestry & Urban Greening, 49, p. 1-34. https://doi.org/10.1016/j.ufug.2020.126645
Hofman, J.; Bartholomeus, H.; Janssen, S.; Calders, K.; Wuyts, K.; Wittenberghe, S. van.; Samson, R. (2016). Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): a model and experimental approach. Urban Forestry & Urban Greening, 20, p. 265-276. https://doi.org/10.1016/j.ufug.2016.09.013
Jones, B. A.; Mcdermott, S. M. (2018). The economics of urban afforestation: insights from an integrated bioeconomic-health model. Journal of Environmental Economics and Management, 89, p. 116-135. https://doi.org/10.1016/j.jeem.2018.03.007
Köppen, W. (1936). Das geographische system der klimate. Berlin: Gerbrüder Bornträger. 44 p.
Lafetá, B. O.; Silva, F. F. da.; Santos, M. A. dos.; Pimenta, I. A.; Fontan, I. C. I.; Fonseca, N. R.; Sartori, C. J. (2020). Modelagem morfométrica de Licania tomentosa (Benth.) por regressão logística e máquinas vetor de suporte. Scientia plena, 16 (6). https://doi.org/10.14808/sci.plena.2020.060206
Lee, I.; Voogt, J. A.; Gillespie, T. J. (2018). Analysis and comparison of shading strategies to increase human thermal comfort in urban areas. Atmosphere, 9 (3). https://doi.org/10.3390/atmos9030091
Li, Y.; Zhang, L.; Teng, Z. (2017). Single-species model under seasonal succession alternating between Gompertz and Logistic growth and impulsive perturbations. International Journal on Geomathematics, 8, p. 241-260. https://doi.org/10.1007/s13137-017-0092-9
Luo, J.; Zhang, M.; Zhou, X.; Chen, J.; Tian, Y. (2018). Tree height and DBH growth model establishment of main tree species in Wuling
Mountain small watershed. Earth and Environmental Science, 108, p. 1-6. https://doi.org/10.1088/1755-1315/108/4/042003
Machado, R. R.; Conceição, S. V.; Leite, H. G.; Souza, A. L.; Wolff, E. (2015). Evaluation of forest growth and carbon stock in forestry projects by system dynamics. Journal of Cleaner Production, 96, p. 520-530. https://doi.org/10.1016/j.jclepro.2013.09.049
Obioma, O. R., Onotu, S. I., Kayode, O. S., Yemiola, I. K., Abdullahi, O., Ugwu, L., Kunle, A. A., Akinsola, O. M. (2020). Comparison of non-linear growth curve models in non-descript California and New Zealand rabbits reared in the tropical conditions of Nigeria. Asian Journal of Research in Agriculture and Forestry, 5 (2), p. 22-28. https://doi.org/10.9734/ajraf/2020/v5i230080
Olivier, M.; Robert, S.; Fournier, R. F. (2016). Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management, 374, p. 20-32. https://doi.org/10.1016/j.foreco.2016.04.047
Pei, N.; Wang, C.; Jin, J.; Jia, B.; Chen, B.; Qie, G.; Qiu, E.; Gu, L.; Sun, R., Li, J.; Zhang, C.; Jiang, S.; Zhang, Z. (2018). Long-term afforestation efforts increase bird species diversity in Beijing, China. Urban Forestry & Urban Greening, 29, p. 88-95. https://doi.org/10.1016/j.ufug.2017.11.007
Sanesi, G.; Colangelo, G.; Lafortezza, R., Calvo, E.; Davies, C. (2016). Urban Green infrastructure and urban forests: a case study of the metropolitan area of Milan. Landscape Research, 42 (2), p. 164-175. https://doi.org/10.1080/01426397.2016.1173658
Sartori, R. A.; Martins, G. A. C.; Zaú, A. S.; Brasil, L. S. C. (2019). Urban afforestation and favela: a study in a community of Rio de Janeiro. Urban Forestry & Urban Greening, 40, p. 84-92. https://doi.org/10.1016/j.ufug.2018.10.004
Seidel, D.; Ruzicka, K.; Puettmann, K. (2016). Canopy gaps the shade of Douglas-fir crowns in the western Cascades, Oregon. Forest Ecology and Management, 363, p. 31-38. http://dx.doi.org/10.1016/j.foreco.2015.12.024
Shoda, T.; Imanishi, J.; Shibata, S. (2020). Growth characteristics and growth equations of the diameter at breast height using tree ring measurements of street trees in Kyoto City, Japan. Urban Forestry & Urban Greening, 49, p. 1-8. https://doi.org/10.1016/j.ufug.2020.126627
Silva, F. A.; Fortes, F. O., Riva, D.; Schorr, L. P. B. (2017). Caracterização de índices morfométricos para Araucaria angustifólia plantada na região norte do Rio Grande do Sul. Advances in Forestry Science, 4 (3), p. 143-146. https://doi.org/10.34062/afs.v4i3.5111
Silva, G. C. S.; Calegario, N.; Silva, A. A. L.; Cruz, J. P.; Leite, H. G. (2018). Site index curves in thinned and non-thinned eucalyptus stands. Forest Ecology and Management, 408, p. 36-44. https://doi.org/10.1016/j.foreco.2017.10.036
Sterba, H. (1991). Forstliche Ertragslehre. Wien: Universität für Bodenkultur. 160p.
Subedi, M. R.; Oli, B. N.; Shrestha, S.; Chhin, S. (2018). Height-diameter modeling of Cinamomum tomala grown in natural forest in Mid-
Hill of Nepal. International Journal of Forestry Research, 1, p. 1-11. https://doi.org/10.1155/2018/6583948
Taiz, L.; Zeiger, E.; Moller, I.; Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre, RS: Artmed. 888p.
Tjørve, E.; Tjørve, K. M. C. (2010). A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. Journal of Theoretical Biology, 267 (3), p. 417-425. https://doi.org/10.1016/j.jtbi.2010.09.008
Tjørve, K. M. C.; Tjørve, E. (2017). A proposed family of unified models for sigmoidal growth. Ecological Modelling, 359, p. 117-127. https://doi.org/10.1016/j.ecolmodel.2017.05.008
Trindade, R. N. R.; Lafetá, B. O.; Aguia, V. F.; Silva, A. G.; Ferraro, A. C.; Penido, T. M. A.; Vieira, D. S. (2019). Morfometria da copa de povoamentos de Eucalyptus grandis Hill ex Maiden x E. urophylla S. T. Blake em diferentes espaçamentos de plantio. Scientia Forestalis, 47 (121), p. 83-91. https://dx.doi.org/10.18671/scifor.v47n121.08
Ukalska, J.; Jastrzębowski, S. (2019). Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak. Folia Forestalia Polonica, 61 (1), p. 30-41. https://doi.org/10.2478/ffp-2019-0003
Vieira, G.C.; Mendonça, A. R.; Silva, G. F.; Zanetti, S. S.; Silva, M. M.; Santos, A. R. (2018). Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of the Total Environment, 619-620, p. 1473-1481. https://doi.org/10.1016/j.scitotenv.2017.11.138
Yang, Y.; Huang, S. (2017). Allometric modelling of crown width for white spruce by fixed-and mixed-effects models. The Forestry Chrinicle, 33 (2), p. 138-147. https://doi.org/10.5558/tfc2017-020
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Espinhaço
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.