A new approach to geo-visualizing public security data: the case of study of the public prosecutor of Rio Grande do Norte state, Brazil
DOI:
https://doi.org/10.5281/zenodo.3345138Keywords:
public security, spatial data processing, geo-technologies, geo-visualizer, Public MinistryAbstract
In this research, we address problems associated with information without spatial context in public security, specifically in the Public Ministry of Rio Grande do Norte (PMRN). We have shown that information without spatial context makes the investigative analysis more difficult, increasing investigation time and weakening strategies. To address this problem, we investigate the use of geo-technology in the context of public management, with emphasis on public security management. We have identified in the literature the significant use of geo-technologies in processing public security data in criminal areas, but not in civil and administrative areas. We have explored this gap, structuring and developing a geo-visualizer of the occurrences recorded in the PMRN. Structured from interviews with prosecutors, and developed through Google Maps API, the geo-visualizer contributes to: i) to correlate (visually) investigations by proximity; ii) reduce the time in the displacements in the work areas; and (iii) increase the institution’s investigative capacity.
References
Araújo CS, Libório M, de Abreu JF. 2019. Plataforma de localização de escolas públicas rurais e a disseminação da aprendizagem cartográfica e do planejamento de atividades educacionais. ACTA GEOGRÁFICA, 12(30), 1-15. http://dx.doi.org/10.5654/acta.v12i30.4395
Bordin M, da Silva JP, Manske, KV, Costa A, Caneparo SC. 2013. O uso do geoprocessamento na segurança pública do Estado do Paraná. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto–SBSR. Foz do Iguaçu, 4776- 4783.
Bornhofen PR, Tenfen E. 2009. Mapeamento criminal por meio da plataforma Google Maps. Revista Brasileira de Segurança Pública, 3(5), 82-98.
Brasil. Constituição da República Federativa do Brasil 1988. Centro de Documentac̦ão e Informac̦ão Coordenac̦ão de Publicac̦ões, 1996.
Brito PL, Jesus EGV, Sant'Ana RMS, Martins C, Delgado JPM, Fernandes VO. 2014. Official crime data versus collaborative crime mapping at a brazilian city. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(2), 137-144. http://dx.doi.org/10.5194/isprsarchives-XL-2-137-2014
CCSPJP, Consejo Ciudadano para la Seguridad Pública y la Justicia Penal. 2016. Las 50 ciudades más violentas del mundo, 2016. [Online] URL: http://www.seguridadjusticiaypaz.org.mx/
Cerqueira D, Lima RS, Bueno S, Valencia LI, Hanashiro O, Machado PHGM. Atlas da Violência 2017. 2017. Rio de Janeiro: IPEA; 2017 [Online] URL: http://www.ipea.gov.br/portal/images/170609_atlas_da_viol encia_2017.pdf
Chen H, Atabakhsh H, Tseng C, Marshall B, Kaza S, Eggers S, Violette C. 2005, April. Visualization in law enforcement. In CHI'05 extended abstracts on Human factors in computing systems (pp. 1268-1271). ACM.
CNMP, Conselho Nacional do Ministério Público. 2017. Ministério Público: um retrato – dados de 2016. Brasília:
CNMP, 2017. [Online] URL: http://www.cnmp.mp.br/portal/publicacoes/245-cartilhas-e-manuais/10521-ministerio-publico-um-retrato-2017
Crowder M, Darr L, Garza G, Allen B. 2018. Opencrimemapping. org: An Online Tool for Visualizing Crime. SMU Data Science Review, 1(3), 11.
Silva EP, Laudares S, Libório MP, Ekel MP. 2018. Criminality spatial dynamic in Manaus City, AM. HOLOS, 1, 259-270. http://dx.doi.org/10.15628/holos.2018.5698
Silva ERG, de Oliveira TPS, Bedin SPM, Rover AJ, Kern VM. 2008. Visão sistêmica na interoperabilidade dos Sistemas para segurança pública: estudo do caso de Santa Catarina. In: Conferência Ibero-Americana WWW/Internet, Lisboa. IADIS, 2008. p. 377-384.
Silva IR, Libório MP. Geovisualização e geocolaboração do patrimônio histórico de Cabo Frio-RJ. Revista Tamoios, 14(2). http://dx.doi.org/10.12957/tamoios.2018.37558
Silva JK, Libório MP, Laudares S. 2016. Geovisualização da Arborização Viária Patrimoniada da Zona Central de Sete Lagoas-MG. Revista da Sociedade Brasileira de Arborização Urbana, 11(3), 56-72.
Melo SN, Matias LF. 2016. GEOGRAFIA DO CRIME E DA VIOLÊNCIA NO BRASIL ENTRE 2007 A 2015. Revista da ANPEGE, 12(19), 146-165. DOI: 10.5418/RA2016.1219.0006.
Downs JA. 2016. Mapping sex offender activity spaces relative to crime using time-geographic methods. Annals of GIS, 22(2), 141-150. https://doi.org/10.1080/19475683.2016.1147495
Falco E, Kleinhans R. 2018. Digital Participatory Platforms for Co-Production in Urban Development: A Systematic Review. International Journal of E-Planning Research (IJEPR), 7(3), 1-27 http://dx.doi.org/10.4018/IJEPR.2018070105
Faria AHP, Alves DFC, Abreu JF. 2018. Análise espacial aplicada ao estudo do crime: uma abordagem exploratória da distribuição dos atrativos para o crime no espaço urbano de Belo Horizonte. Caderno de Geografia, 28(55), 1006-1020.
Ferreira HRSA, Marcial EC. 2015. Violência e segurança pública em 2023: cenários exploratórios e planejamento prospectivo.
Ferro AL. 2006. Inteligência de segurança pública e análise criminal. Revista Brasileira de Inteligência, 2(2), 77-92.
Forsythe KW, Marvin CH, Valancius CJ, Watt JP, Swales SJ, Aversa, JM, Jakubek DJ. 2016. Using geovisualization to assess lead sediment contamination in Lake St. Clair. The Canadian Geographer/Le Géographe canadien, 60(1), 149-158.
França Júnior FF. 2011. Atividade de inteligência no ministério público. Revista Jurídica do MPRN, 1(1), 52-77.
Furtado V, Ayres L, De Oliveira M, Vasconcelos E, Caminha C, D’Orleans J, Belchior M. 2010. Collective intelligence in law enforcement–The WikiCrimes system. Information Sciences, 180(1), 4-17.
Geggie P. 1999. Mapping and Serial Crime Prediction. In N. LaVigne, & J. Wartell (Eds.). Crime Mapping: Case Studies - Success in the Field (109-116). Washington, DC: Police Executive Research Forum.
Gerber MS. 2014. Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61, 115-125. http://dx.doi.org/10.1016/j.dss.2014.02.003
Google. 2017. Google maps developers. [Online] URL: https://developers.google.com/maps/documentation/javascri pt
Gualberto M, Silva Martinuci O, Libório M, Laudares S. 2017. Sistemas baseados em localização: uma leitura geográfica. Revista Espaço e Geografia, 20(2).
Harries KD. 1999. Mapping crime: Principle and practice (No. NCJ 178919). US Department of Justice, Office of Justice Programs, National Institute of Justice, Crime Mapping Research Center.
Herrmann CR. 2013. Street-level spatiotemporal crime analysis: examples from Bronx County, NY 2006–2010. In Crime modeling and mapping using geospatial technologies (pp. 73-104). Springer, Dordrecht.
IBGE, Instituto Brasileiro de Geografia e Estatística. 2018. Panorama dos Estados do Brasil, Rio Grande do Norte, 2018. [Online] URL:
https://cidades.ibge.gov.br/brasil/rn/panorama
Jefferis E. 2015. Crime modeling and mapping using geospatial technologies. 2015. Cartography and Geographic Information Science. 42(2). https://doi.org/10.1080/15230406.2015.986035
Johnson PA, Sieber R, Scassa T, Stephens M, Robinson P. 2017. The cost (s) of geospatial open data. Transactions in GIS, 21(3), 434-445. https://doi.org/10.1111/tgis.12283
Laudares S. 2014. Geotecnologia ao alcance de todos. Editora Appris. Curitiba.
Máximo AA. 2004. A importância do mapeamento da criminalidade utilizando-se tecnologia de sistema de informação geográfica para auxiliar a segurança pública no combate à violência. Dissertação (Mestrado em Engenharia de Produção). PPGEP, Universidade Federal de Santa Catarina, Florianópolis.
Meijer A, Wessels M. 2019. Predictive Policing: Review of Benefits and Drawbacks. International Journal of Public Administration, 1-9. https://doi.org/10.1080/01900692.2019.1575664
Mohler GO, Short MB, Brantingham, PJ, Schoenberg FP, Tita GE. 2011. Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100-108. https://doi.org/10.1198/jasa.2011.ap09546
Morgan J, P. Steinberg. 2013. “Testing the Usability of Time-Geographic Maps for Crime Mapping.” Geotechnologies and the Environment 8: 339–366. http://dx.doi.org/10.1007/978-94-007-4997-9_15
Oatley GC, Ewart BW. 2003. Crimes analysis software:‘pins in maps’, clustering and Bayes net prediction. Expert Systems with Applications, 25(4), 569-588.
OpenLayers. 2017. Using OpenLayers API/OpenStreetMaps – Geocodezip. [Online] URL: http://www.geocodezip.com
PERF, Police Executive Research Forum. 2013. Compstat: Its origins, evolution, and future in law enforcement agencies. Bureau of Justice Assistance Washington, DC 20531.
Ratcliffe JH. 2004. Crime mapping and the training needs of law enforcement. European Journal on Criminal policy and research, 10(1), 65-83.
Rodríguez P, Palomino N, Mondaca J. 2017. Using Big Data and its Analytical Techniques for Public Policy Design and Implementation in Latin America and the
Caribbean. Inter-American Development Bank. http://dx.doi.org/10.18235/0000694
Santos MAF. 2016. A GEOGRAFIA DOS CRIMES VIOLENTOS EM UBERLÂNDIA-MG. Revista da ANPEGE, 12(19), 166-182. http://dx.doi.org/10.5418/RA2016.1219.0007
Senić V. 2017. The use of geographic information systems in public services. Ekonomski horizonti, 19(3), 227-239. http://dx.doi.org/10.5937/ekonhor1703227S
Walker JT, Drawve GR. 2018. Foundations of Crime Analysis: Data, Analyses, and Mapping. Routledge.
Yasobant S, Vora KS, Hughes C, Upadhyay A, Mavalankar DV. 2015. Geovisualization: a newer gis technology for implementation research in health. Journal of Geographic Information System, 7(01), 20. http://dx.doi.org/10.4236/jgis.2015.71002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Espinhaço
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.