Distribuição espacial de atributos florestais em um ecossistema de Mecrusse, no sul de Moçambique
DOI:
https://doi.org/10.5281/zenodo.6604677Keywords:
Androstachys johnsonii, monodominance, geostatistics, krigingAbstract
Spatial variability of biometric variables can assist in planning and stratification of forest inventories. is work aimed to check the dependence of spatial distribution in a fragment of Mecrusse, Androstachys johnsonii, by comparing the spatial distribution of dominant height, volume, basal area, and density of (a) all species, (b) the dominant species and (c) all species excluding the dominant. Were used data from 79 temporary plots of 0.2 ha in the region of, Gaza Province, southern Mozambique. Were measured all the trees with diameter at breast height (DBH), greater than or equal to 10 cm (DBH ≥ 10 cm). e variables were associated with the geographic coordinate of the collection point for the processing of data by geostatistics techniques. Have been tested three models (Spherical, Exponential and Gaussian), by the method of ordinary least squares. e exponential model obtained best fit between the others and was selected and used to estimate the variables for all forests. e variable dominant height showed no spatial dependence, when analyzed for all forest or to the species of Androstachys johnsonii. e dominance of the species studied presented spatial dependence. e interpolation by ordinary kriging spatial distribution showed basal area ranging from 4 to 42 m2ha-1, and North and northeast regions with higher concentrations than the South.
References
Akhavan, R., Zahedi Amiri, G., Zobeiri, M. (2010). Spatial variability of forest growing stock using geostatistics in the Caspian region of Iran. Caspian Journal of Environmental Sciences, v. 8, n. 1, p. 43-53.
Amaral, L. P., Ferreira, R. A., Watzlawick, L. F., Longhi, S. J., Sebem, E. (2013).
Influência da floresta alterada na distribuição espacial de três espécies da Floresta Ombrófila Mista avaliada pela geoestatística. Revista Árvore, v. 37, n. 3, p. 491-501.
https://doi.org/10.1590/S0100-67622013000300012.
Assis, A. L. de., Mello, J. M., Guedes, I. C. L., Scolforo, J. R. S., Oliveira, A. D. (2009).
Development of a sampling strategy for young stands of Eucalyptus sp. using geostatistics. Cerne, v. 15, n. 2, p. 166-173.
Assmann, E. e principles of forest yield study. Oxford: Pergamon, 1970. 506 p.
Biondi, F., Myers, D. E., Avery, C. C. Geostatistically modeling stem size and increment in an old-growth forest. Canadian Journal of Forest Research, v. 24, p. 1354–1368,
Cardoso, G.A. (1963). Madeiras de Moçambique: Androstachys johnsonii. Maputo, Mozambique: Serviços de Agricultura e Serviços de Veterinária. Condit, R. (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. London: Springer. Goslee, S. C. (2006). Behavior of vegetation sampling methods in the
resence of spatial autocorrelation. Plant Ecology, v. 187, p. 203-212.
INE – Instituto Nacional de Estatística. (2017). Indicadores distritais do Censo de 2017
- Moçambique. MAPUTO: Instituto Nacional de Estatística.
Kearsley, E., de Haulleville, T., Huens, K., Kidimbu, A., Toirambe, B., Baert, G., Verbeeck, H. (2013). Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature
ommunications, v. 4, 2269. https://doi.org/10.1038/ncomms3269. Kearsley, E., Verbeeck, H., Huens, K., Van De Perre, F., Doetterl, S., Baert, G., Beeckman, H., Boeckx, P., Huygens, D. (2017). Functional community structure
of African monodominant Gilbertiodendron dewevrei forest
nfluenced by localenvironmental filtering. Ecology and Evolution, v. 7, n. 295–304. https://doi.org /10.1002/ece3.2589.
Magalhães, T. M., Seifert, T. (2015). Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carbon Balance Manage, v. 10, p. 9. https://doi.org/10.1186/s13021-015-0019-4. Magalhães, T.M. (2015). Live above- and belowground biomass of a Mozambican
evergreen forest: a comparison of estimates based on regression equations and biomass expansion factors. Forest Ecosystems, v. 2, n. 28. https://doi.org/10.11 86/s40663-015-0053-4. Magalhães, T. M. (2017). Carbon stocks in necromass and soil pools of a Mozambican tropical dry forest under different disturbance regimes. Biomass and Bioenergy, v. 105, p. 373-380. https://doi.org/10.1016/j.biombioe.2017.07.023 Marzoli, A. (2007). Inventário Florestal Nacional. Maputo, Moçambique: Coperazione Italiana. 86 p.
Matheron, G. (1971). e theory of regionalized variables. Paris, France: École Nationale Supérieure des Mines de Paris. 211 p.
Mc Bratney, A. G., Webster, A. G. (1986). Choosing functions for semi-variograms and fitting them to sampling estimates. Journal of Soil Science, v. 37, p. 617-639. https://doi.org/10.1111/j.1365-2389.1986.tb00392.x. Mello, J. M., Diniz, F. S., Oliveira, A. D., Scolforo, J. R. S., Acerbi junior, F. W., iersh, C. R. (2009). Métodos de amostragem geoestatística para estimativa do número
de fustes e volume em plantios de Eucalyptus grandis. Floresta, v. 39, p. 157-166.
http://dx.doi.org/10.5380/rf.v39i1.13735.Mello, J. M. (2004). Geoestatística aplicada ao inventário florestal. Doutorado, Universidade de São Paulo, Brasil. Menegol, O. (1991). Índice de sítio e relação entre altura dominante e teores nutricionais das acículas em povoamentos de Pinus elliottii var, elliottii no segundo planalto Paranaense. Mestrado, Universidade Federal do Paraná, Brasil. Philip, M. S. (1994). Measuring Trees and Forests. 2nd ed. Wallingford: CAB International. 310 p.
Pimentel Gomes, F., Garcia, C. H. (2002). Estatística aplicada a experimentos agronômicos e florestais. Piracicaba: FEALQ, 2002. 309 p.
R Core Team. R. (2019). A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Ribeiro Júnior, P. J., Diggle, P. J. (2001). geoR: Apackage for geostatistical analysis. RNews, v. 1, p. 15-18.
Rode, R., Figueiredo-Filho, A., Machado, S. A., Galvão, F. (2010). Análise do padrão espacial de espécies e de grupos florísticos estabelecidos em um povoamento de Araucaria angustifólia e em uma Floresta Ombrófila Mista no centro-sul do Paraná. Floresta, v. 40, p. 255-268.
Rufino, T. M. C., iersch, C. R., Ferreira, S. O., Kanegae Junior, H., Fais, D. (2006). Uso da Geoestatística no estudo da relação entre variáveis dentrométricas de povoamentos de Eucalyptus sp. e atributos do solo. Ambiência, v. 2, n. 1, p. 83-93.
Samra, J. S., Gill, H. S., Bhatia, V. K. (1989). Spatial stochastic modelling of growth and forest resource evaluation. Forest Science, v. 35, n. 3, p. 663-676.
Santos, M. C. N., Mello, J. M., Mello, C. R., Avila, L. F. (2013). Spatial continuity of soil
attributes in an atlantic forest remnant in the mantiqueira range, MG. Ciência e Agrotecnologia, v. 37, n. 1, p. 68-77.
Tobler, W. R. (2004). On the First Law of Geography: A Reply. Association of American Geographers, v. 94, n. 2, p. 290-293.
Tonini, H., Finger, C. A. G., Schneider, P. R., Spathelf, P. (2002). Comparação gráfica entre curvas de índice de sítio para Pinus elliottii e Pinus taeda desenvolvidas no Sul do Brasil. Ciência Florestal, v. 12, p. 143-152.
Viola, D. N. (2007). Detecção e modelagem de padrão espacial em dados binários e de contagem. Doutorado, Universidade de São Paulo, Piracicaba, 2007.
Whitmore, T. C. (1990). An Introduction to Tropical Rain Forest. Oxford: Clarendon Press, 1990. Wild, H., Fernandes, A. (1968). Flora Zambesiaca-vegetation map and suplement. Zimbabwe: Salisbury. 68 p.
Wulder, M. A., Lavigne, M., Franklin, S. E. (1996). High spatial resolution optical image texture for improved estimation of forest stand leaf area index. Canadian Journal of Remote Sensing, v. 22, p. 441-449.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Espinhaço
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.