Agroclimatic zoning of crops with energy potential in the state of Minas Gerais

Authors

  • Luciano S. dos Reis
  • Ruibran Januário dos Reis
  • Daniel Pereira Guimarães
  • Cláudio Homero Ferreira da Silva

DOI:

https://doi.org/10.5281/zenodo.3956646

Keywords:

agroclimatic zoning, biomass, energy potential, Atlas of Biomass, Minas Gerais

Abstract

The development and adoption of highly efficient technologies to maximize the exploitation of renewable sources of clean energy are crucial for reducing environmental impacts and the amount of secondary wastes. Increased process efficiency ensures the sustainability of energy supply based on current and future levels of economic and social demands. The present study makes an exploratory analysis based on the agroclimatic zoning of the main agricultural crops of the state of Minas Gerais, presenting, in the form of maps, the results found by type of biomass. The agroclimatic zoning of the potential crops for energy production in Minas Gerais is the result of the interaction between the climatological variables and the specific parameters of the crops. Considering the physical, environmental and socioeconomic diversity of Minas Gerais, the accomplishment of the agroclimatic zoning to identify the zones with greater aptitude for the production of biomass proved fundamental to subsidize the energy production policies in the state.

References

Álvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22 (6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507

APROSOJA BRASIL - Associação dos Produtores de Soja e Milho do Estado de Mato Grosso. 2014. Uso da soja. [online] URL: http://aprosojabrasil.com.br/2014/sobre-a-soja/uso-da-soja

Assad ED, Pinto HS, Junior JZ, Ávila AMH. 2004. Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira. 39 (11): 1057-1064. [online] URL: http://www.scielo.br/pdf/%0D/pab/v39n11/22575.pdf

ANEEL – Agência Brasileira de Energia Elétrica. 2016. Banco de Informações de Geração – Matriz de Energia Elétrica. [online] URL: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/Oper acaoCapacidadeBrasil.cfm

BEEMG. 2015. 30° Balanço Energético do Estado de Minas Gerais. Companhia Energética de Minas Gerais. [online] URL: http://www.cemig.com.br/pt-br/A_Cemig_e_o_Futuro/inovacao/Alternativas_Energetica s/Documents/BEEMG.pdf

BP Statistical Review of World Energy. 2016. [online] URL: https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf

Bueno OC, Esperancini MST, Takitane IC. 2015. Produção de biodiesel no Brasil: aspectos socioeconômicos e ambientais. Ceres, 56 (4). [online] URL: http://www.redalyc.org/html/3052/305226808018/

EIA - Energy Information Administration. 2016. Renewable Energy - Official Energy Statistics from the U.S. Government. [online] URL: http://www.eia.gov/energyexplained/index.cfm?page

EPE – Empresa de Pesquisas Energéticas. 2008. Plano Nacional de Energia 2030, cap 8: Geração Termelétrica – Biomassa. [online] URL: http://www.epe.gov.br/PNE/20080512_8.pdf

EPE – Empresa de Pesquisas Energéticas. 2016. Balanço

Energético Nacional. [online] URL: https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_20 16.pdf

Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Nepomuceno AL, Molinari HBC, Bon EP. 2010. Biomass residues in Brazil: availability and potential uses. Waste and Biomass Valorization, 1 (1): 65-76. https://doi.org/10.1007/s12649-010-9008-8

Freppaz D, Minciadia R, Robbab M, Rovattia M, Sacilea R, Taramassoa A. 2004. Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy. 26 (1): 15-25. https://doi.org/10.1016/S0961-9534(03)00079-5

Gazzoni DL. 2006. As políticas públicas de biocombustíveis e o mercado de oleaginosas. EMBRAPA. [online] URL: http://200.144.182.46/midiateca/apresentacao/politicaspubli casgazzoni.pdf

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. The WorldClim interpolated global terrestrial climate surfaces. Version 1.4. [online] URL: http://www.worldclim.org/version1

IBGE – Instituto Brasileiro de Geografia e Estatística. 2016. Produção Agrícola Municipal. IBGE. Rio de Janeiro/RJ. [online] URL: http://www2.sidra.ibge.gov.br/bda/tabela/protabl.asp?c=1612&z=p&o=30&i=P

Khachatryan H, Jessup E, Casavant K. 2010. A GIS-based Estimation of Regional Biomass Supply and Transportation Costs for Biofuel Plant Least-Cost Location Decisions. 51st Annual Transportation Research Forum, Arlington, Virginia. [online] URL: http://ageconsearch.umn.edu/record/207816/files/2010_14_ Economic_Impact_EU_Emissions_Airlines.pdf

Lora, E.S., Andrade, R.V. 2009. Biomass as energy source in Brazil. Renewable and sustainable energy reviews. 13 (1): 777–788. https://doi.org/10.1016/j.rser.2007.12.004

Miura AK, Formaggio AR, Shimabukuro YE, Luiz AJB, dos Anjos SD, Temperado EC. 2011. Potencial das áreas disponíveis ao cultivo de biomassa para produção de energia, nas Microrregiões Sulriograndenses de Cerro Largo, Santa Rosa e Santo Ângelo. Anais XV Simpósio Brasileiro de Sensoriamento Remoto-SBSR, Curitiba, PR, Brasil. 30. [online] URL: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/915428/potencial-das-areas-disponiveis-ao-cultivo-de-biomassa-para-producao-de-energia-nas-microrregioes-sulriograndenses-de-cerro-largo-santa-rosa-e-santo-angelo

Panichelli L, Gnansounou E. 2008. GIS-based approach for defining bioenergy facilities location: A case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass and Bioenergy. 32 (4): 289-300. https://doi.org/10.1016/j.biombioe.2007.10.008

Pereira Jr AO, Pereira AS, La Rovere EL, Barata, MML, Villar SC, Pires SH. 2011. Strategies to promote renewable energy in Brazil. Renewable and sustainable energy reviews.

(1): 681-688. https://doi.org/10.1016/j.rser.2010.09.027

Pereira Jr AO, Costa RC, Costa CV, Marreco JM, La Rovere EL. 2013. Perspectives for the expansion of renewable energy sources in Brazil. Renewable and sustainable energy reviews. 23 (1): 49-59. https://doi.org/10.1016/j.rser.2013.02.020

Pereira EB, Martins FR, Abreu SD, Rüther R. Atlas brasileiro de energia solar. INPE, 2006. [online] URL: http://ftp.cptec.inpe.br/labren/publ/livros/brazil_solar_atlas_ R1.pdf

Pereira MG, Camacho CF, Freitas MAV, Silva NF. 2012. The renewable energy market in Brazil: Current status and potential. Renewable and Sustainable Energy Reviews, 16, (6): 3786-3802. https://doi.org/10.1016/j.rser.2012.03.024

Ranta T. 2005. Logging residues from regeneration fellings for biofuel production–a GIS-based availability analysis in Finland. Biomass and Bioenergy. 28 (2): 171-182. https://doi.org/10.1016/j.biombioe.2004.08.010

Ribeiro CAAS, Mounts DJ, Menezes SJC, Rocha RRC, Chaves MA, Castro NLM, Barros KO, Martins BF, Gleriani JM, Soares, VP. 2015. An Equitable Approach for Compensating Municipalities of the Rio Grande Watershed for Electricity Generated by the Furnas Hydropower Plant, Brazil. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40 (7): 913. [online] URL: https://search.proquest.com/openview/1a5cc46c47526161f0 8761c0859b744a/1?pq-origsite=gscholar&cbl=2037674

Sediyama GC, Júnior JCFM, Santos AR, Ribeiro A, Costa MH, Hamakawa PJ, Costa JMN, Costa LC. 2001. Zoneamento agroclimático do cafeeiro (Coffea arabica L.) para o estado de Minas Gerais, Brasil. Revista Brasileira de Agrometeorologia, 9 (3): 501-509. [online] URL: http://trigo.cnpt.embrapa.br/pesquisa/agromet/pdf/revista/ca p14.pdf

Sultana, A.; Kumar, A. 2012. Optimal siting and size of bioenergy facilities using geographic information system.

Applied Energy. 94: 192-201. https://doi.org/10.1016/j.apenergy.2012.01.052

Tenerelli P, Monteleone MA. 2008. Combined land-crop multicriteria evaluation for agroenergy planning. Italy:

SUSTOIL. University of Foggia. [online] URL: https://s3.amazonaws.com/academia.edu.documents/46998037/A_combined_land-crop_multicriteria_evalu20160704-5039-19gswlh.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508265552&Signature=jyEGpUJGxmwqVw7OQHnE5hrxtVA%3D&response-content-disposition=inline%3B%20filename%3DA_combined_land

-crop_multicriteria_evalu.pdf

Tolmasquim MT, Guerreiro A, Gorini R. 2007. Matriz energética brasileira: uma prospectiva. Novos estudos -

CEBRAP. (79): 47-69. [online] URL: http://www.scielo.br/scielo.php?pid=S0101-33002007000300003&script=sci_arttext

Voivontas D, Assimacopoulos D, Koukios EG. 2001. Assessment of biomass potential for power production: a GIS based method. Biomass and Bioenergy, 20 (2): 101-112. https://doi.org/10.1016/S0961-9534(00)00070-2

Wollmann CA, Galvani E. 2013. Zoneamento agroclimático: linhas de pesquisa e caracterização teórica-conceitual. Sociedade & natureza. 25 (1): 179-190. [online] URL: http://www.seer.ufu.br/index.php/sociedadenatureza/article/ view/17438

World Commission on Dams. 2001. Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams. Earthscan. [online] URL: https://www.internationalrivers.org/sites/default/files/attached-files/world_commission_on_dams_final_report.pdf

Published

2017-06-04

How to Cite

Reis, L. S. dos, Reis, R. J. dos, Guimarães, D. P., & Silva, C. H. F. da. (2017). Agroclimatic zoning of crops with energy potential in the state of Minas Gerais. evista Espinhaço, 6(1). https://doi.org/10.5281/zenodo.3956646

Issue

Section

Artigos

Most read articles by the same author(s)