Comparing vegetation indexes between CBERS, Landsat and Rapideye images for the Brazilian Cerrado area
DOI:
https://doi.org/10.5281/zenodo.3937479Keywords:
NDVI and SAVI, Difference map, Remote SensingAbstract
This study aims to compare the quality of the NDVI and SAVI indices and their difference maps from images from the CBERS-4, Landsat-8 (lower resolution), and Rapideye-3A (higher resolution) satellites in an area of Cerrado, Minas Gerais, Brazil. First, the two indexes were calculated for the three images, then these maps were reclassified from the pixel range into four classes using the field and MAPBIOMAS project as the criteria. Following the maps of the CBERS-4 indices were compared with the Rapideye-3A correspondent. The same was done with landsat-8 maps. All processes were carried out with images from May 2015 in ArcGIS. CBERS reported results for NDVI similar to Rapideye, but SAVI presented errors. NDVI and SAVI results from Landsat image showed outliers when compared to CBERS and Rapideye data. The CBVI-4 NDVI difference maps indicated an approximation with the Rapideye results demonstrating the quality of the first, despite its lower resolution. The SAVI results were not satisfactory, either by error (CBERS-4) or due to very different values from the reference satellite, probably related to the use of a constant L unable to portray the variety of vegetation.
References
Aburas, M. M., Abdullah, S. H., Ramli, M. F., Ash’aari, Z. H. (2015). Measuring Land Cover Change in Seremban, Malaysia Using NDVI Index. Procedia Environmental Sciences, 30, pp. 238–243.http://dx.doi.org/10.1016/j.proenv.2015.10.043
Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), pp. 711–728.https://doi.org/10.1127/0941-2948/2013/0507
MMA. – M. do M. (2020). Geo catálogo do Ministério do Meio Ambiente.
Aquino da Silva, A. G., Amaro, V. E., Stattegger, K., Schwarzer, K., Vital, H., Heise, B. (2015). Spectral calibration of CBERS 2B multispectral satellite images to assess suspended sediment concentration. ISPRS Journal of Photogrammetry and Remote Sensing, 104, pp. 53– 62.https://doi.org/10.1016/j.isprsjprs.2015.02.011
Baeza, S., & Paruelo, J. M. (2020). Land Use/Land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote Sensing, 12(3), p. 381.https://doi.org/10.3390/rs12030381
Cahalane, C., Magee, A., Monteys, X., Casal, G., Hanafin, J., Harris, P. (2019). A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sensing of Environment, 233, p. 111414.https://doi.org/10.1016/j.rse.2019.111414
Carvalho, A. A., & Baptista, G. M. de M. (2015). Influência da correção atmosférica na conversçao dos dados de radiância para reflectância para o cálculo do evi em imagem rapideye. Revista Brasileira de Cartografia, 67(7), pp.
–1390.
Darvishzadeh, R., Skidmore, A., Abdullah, H., Cherenet, E., Ali, A., Wang, T., et al. (2019). Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. International Journal of Applied Earth Observation and Geoinformation, 79, pp. 58–70.https://doi.org/10.1016/j.jag.2019.03.003
Diniz, A. D., Oliveira, C. V. de, & Augustin, C. H. R. R. (2013). Relações solo-superfície geomórficas na porção norte da Bacia do Ribeirão Chiqueiro - Gouveia, MG. Geonomos.https://doi.org/10.18285/geonomos.v13i1e2.131 ESRI. (2015). Environmental Systems Research Institute. ESArcGIS 10.5: GIS by ESRI. ESRI.
Feng, Y., Lu, D., Moran, E., Dutra, L., Calvi, M., & de Oliveira, M. (2017). Examining Spatial Distribution and Dynamic Change of Urban Land Covers in the Brazilian Amazon Using Multitemporal Multisensor High Spatial Resolution Satellite Imagery. Remote Sensing, 9(4), p. 381.https://doi.org/10.3390/rs9040381
Gonçalves, A. B., Godoi, R. F., Paranhos, A. C., Folhes, M. T., Pistori, H. (2018). Urban Phytophysiognomy Characterization Using NDVI from Satellites Images and Free Software. Anuário do Instituto de Geociências - UFRJ, 41(3), pp. 24–36.http://dx.doi.org/10.11137/2018_3_24_36
Halperin, J., LeMay, V., Coops, N., Verchot, L., Marshall, P., Lochhead, K. (2016). Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods. Remote Sensing of Environment, 179, pp. 170–182.http://dx.doi.org/10.1016/j.rse.2016.03.028
Imani, J., Ebrahimi, A., Gholinejad, B., Tahmasebi, P. (2018). Comparison of NDVI and SAVI in three plant communities with different sampling intensity (case study: Choghakhour Lake rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1), pp. 152–169.
INPE., I. N. de P. E. –. Imagens de satélites. Disponível em: http://www.dgi.inpe.br/documentacao/satelites
Jarchow, C., Didan, K., Barreto-Muñoz, A., Nagler, P., & Glenn, E. (2018). Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors, 18(5), p. 1546.https://doi.org/10.3390/s18051546
Kong, T. M., Marsh, S. E., van Rooyen, A. F., Kellner, K., & Orr, B. J. (2015). Assessing rangeland condition in the Kalahari Duneveld through local ecological knowledge of livestock farmers and remotely sensed data. Journal of Arid Environments, 113, pp. 77–
http://dx.doi.org/10.1016/j.jaridenv.2014.10.003
Liaqat, M. U., Cheema, M. J. M., Huang, W., Mahmood, T., Zaman, M., & Khan, M. M. (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture, 138, pp. 39–47.http://dx.doi.org/10.1016/j.compag.2017.04.006
Lucas Felipe Kunze, Thabata Amaral, L. M. P. M., Jadson Jose Monteiro Oliveira, A. G. B. J., & Elaine Parros Machado de Sousa, R. L. F. C. (2018). Classification analysis of NDVI time series in metric spaces for sugarcane identification. ICEIS 2018 - Proceedings of the 20th International Conference on Enterprise Information Systems, 1, pp. 162–169.
Magney, T. S., Eitel, J. U. H., Vierling, L. A. (2017). Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precision Agriculture, 18(4), pp. 429–451.https://doi.org/10.1007/s11119-016-9463-8
MAPBIOMAS. (2019). Coleção 2.3 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Projeto MapBiomas. Retrieved from http://mapbiomas.org.
Martins, V. S., Soares, J. V., Novo, E. M. L. M., Barbosa, C. C. F., Pinto, C. T., Arcanjo, J. S., et al. (2018). Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations. Remote Sensing of Environment, 218, pp. 55–68. https://doi.org/10.1016/j.rse.2018.09.017
Mbatha, N., & Xulu, S. (2018). Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought. Climate, 6(4), p. 95.https://doi.org/10.3390/cli6040095
Parente, L., Ferreira, L., Faria, A., Nogueira, S., Araújo, F., Teixeira, L., Hagen,S. (2017). Monitoring the brazilian pasturelands: A new mapping approach based on the landsat 8 spectral and temporal domains. International Journal of Applied Earth Observation and Geoinformation, 62, pp. 135–143.http://dx.doi.org/10.1016/j.jag.2017.06.003
Peng, L., Liu, K., Cao, J., Zhu, Y., Li, F., Liu, L. (2020). Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods. International Journal of Remote Sensing, 41(3), pp. 813-838.https://doi.org/10.1080/01431161.2019.1648907
Pereira, O., Ferreira, L., Pinto, F., Baumgarten, L. (2018). Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sensing, 10(11), p. 1761.https://doi.org/10.3390/rs10111761
Pinto, C., Ponzoni, F., Castro, R., Leigh, L., Mishra, N., Aaron, D., Helder, D. (2016). First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4. Remote Sensing, 8(5), p. 405.https://doi.org/10.3390/rs8050405
Qian, C., Shao, L., Hou, X., Zhang, B., Chen, W., Xia, X. (2019). Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. CATENA, 183, p.
https://doi.org/10.1016/j.catena.2019.104182
Rani, M., Kumar, P., Pandey, P. C., Srivastava, P. K., Chaudhary, B. S., Tomar, V., Mandal, V.P. (2018). Multi-temporal NDVI and surface temperature analysis for Urban Heat Island inbuilt surrounding of sub-humid region: A case study of two geographical regions. Remote Sensing Applications: Society and Environment, 10, pp. 163– 172.https://doi.org/10.1016/j.rsase.2018.03.007
Ren, H., Zhou, G., & Zhang, F. (2018). Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209, pp. 439– 445.https://doi.org/10.1016/j.rse.2018.02.068
Ren, H., Zhou, G., & Zhang, X. (2011). Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method. Biosystems Engineering, 109(4), pp. 385–395.https://doi.org/10.1016/j.biosystemseng.2011.05.004
Ribeiro G.A.; Silva J.N.C.; Silva J.B. (2016). Índice de Vegetação Ajustado ao Solo (IVAS): estado da arte e suas potencialidades. Revista Brasileira de Geografia Física, 9(6), pp. 2054–2074.
Sampaio, J. C., De Moraes, R. V., Fernandes, S. D. S. (2016). Resonant Orbital Dynamics of CBERS Satellites.https://doi.org/10.5540/03.2016.004.01.0074
Santos, M. M., Machado, I. E. S., Carvalho, E. V., Viola, M. R., & Giongo, M. (2017). Estimativa de parâmetros florestais em área de cerrado a partir de imagens do sensor landsat 8. FLORESTA, 47(1), p. 75.http://dx.doi.org/10.5380/rf.v47i1.47988
Siddiqui S.; Javid K. (2018). Spatio-temporal Analysis of Aridity Over Punjab Province, Pakistan using Remote Sensing Techniques. International Journal of Economic and Environmental Geology, 9(2), pp. 1–10.
Silveira, E. M. de O., Acerbi Júnior, F. W., Silva, S. T., Mello, J. M. de. (2019). Anthropogenic Disturbances Affect the Relationship Between Spectral Indices and the Biometric Variables of Brazilian Savannas. Floresta e Ambiente, 26(3).https://doi.org/10.1590/2179-8087.033818
Skakun, S., Justice, C. O., Vermote, E., Roger, J.-C. (2018). Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring. International Journal of Remote Sensing, 39(4), pp. 971–992. http://dx.doi.org/10.1080/01431161.2017.1395970
Zhao, J., Vanmaercke, M., Chen, L., Govers, G. (2016). Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau. Geomorphology, 274, pp. 92–105.http://dx.doi.org/10.1016/j.geomorph.2016.09.022
Zheng, Y., Han, J., Huang, Y., Fassnacht, S. R., Xie, S., Lv, E., Chen, M. (2018). Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecological Indicators, 92, pp. 18– 29. http://dx.doi.org/10.1016/j.ecolind.2017.06.040
Zhou, G., Sun, Y., Jiang, L., Liu, N., Li, C., Li, M., Yue, T. (2015). Comparison and analysis of soil moisture retrieval model from CBERS-02B satellite imagery, in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 677–680. IEEE.https://ieeexplore.ieee.org/abstract/document/7325854
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Espinhaço
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.