Landscape influences on water quality composition and structure across multiple temporal and spatial scales in the hydrological unit of the Doce River in Minas Gerais

Authors

  • João Pedro dos Santos
  • Diego Rodrigues Macedo

DOI:

https://doi.org/10.5281/zenodo.10433182

Keywords:

Water quality, Landscape metrics, Spatial scales

Abstract

The degradation of aquatic environments leads to water contamination, resulting in a deterioration of ecosystem quality. The Rio Doce basin has a history of environmental degradation, primarily due to industrial expansion and intensive agriculture. Additionally, in 2015, the Fundão tailings dam (Samarco, BHP Billiton, and Vale) ruptured, releasing ore tailings into the watercourses of the basin, abruptly altering its socio-environmental context and becoming one of the biggest environmental disasters in Brazilian history. The objective of this study was to analyze the relationship between landscape characteristics and water quality in the Minas Gerais portion of the Rio Doce basin across different spatial extents. Statistical models were employed to explore the relationship between water quality parameters and land use, land cover, and landscape metrics for 2008, 2013, and 2018. Three spatial extents were considered: sub-basin, corresponding to the entire upstream drainage area of the monitoring point; riparian, representing a 200-meter buffer zone on each side of the watercourse upstream of the monitoring point; and local, corresponding to a 200-meter buffer zone on each side of the watercourse within a 2-kilometer radius of the monitoring point. The parameters monitored included nitrate, total solids, and turbidity during both rainy and dry periods at 64 monitoring stations. The relationship between variables was assessed through multiple linear regression, allowing for constructing and selecting models with the best fits and identifying variables with the most significant impact on the models. The models with the best explanatory capacity were those of the sub-basin spatial extent (R²adj = 0.20-0.57; median: R²adj = 0.35) and riparian (R²adj = 0.23-0.48; median: R²adj = 0.39), while the local extent (R²adj = 0.07-0.47; median: R²adj = 0.23) performed less effectively. Human activities such as agriculture, urbanization, eucalyptus planting, and mining were associated with worsened water quality across all analyzed extents. Conversely, patches of natural vegetation were found to act as controllers of water quality. The study underscores the urgent need to halt deforestation and degradation in areas near watercourses and throughout the watershed.

References

Aires, U. R. V., Santos, B. S. M., Coelho, C. D., da Silva, D. D., and Calijuri, M. L. (2018). Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land use policy 70, 63–70. doi: 10.1016/j.landusepol.2017.10.026.

Almeida, K. C. de B. (2013). Avaliação da rede de monitoramento de qualidade das águas superficiais da Bacia do Rio das Velhas utilizando o método da entropia. Univ. Fed. Minas Gerais.

ANA, A. N. das Á.- (2016). Conjuntura dos Recursos Hídricos no Brasil - Informe 2016. Brasília.

Anselin, L. (2007). Spatial Regression Analysis in R: A Workbook. Urbana, IL: University of Illinois, Urbana-Champaign Available at: http://www.csiss.org/gispopsci/workshops/2011/PSU/readings/W15_Anselin2007.pdf.

Bartón, K. (2020). Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. , ed. K. Barton New York: Springer-Verlag.

Beier, P., Burnham, K. P., and Anderson, D. R. (2001). Model Selection and Inference: A Practical Information-Theoretic Approach. J. Wildl. Manage. 65, 606. doi: 10.2307/3803117.

Bilotta, G. S., and Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861. doi: 10.1016/j.watres.2008.03.018.

Brazil (2012). Dispõe sobre a proteção da vegetação nativa; altera as Leis nos 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis nos 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e.

Callisto, M., Macedo, D. R., Castro, D. M. P. de, and Alves, C. B. M. (2019). Bases Conceituais para conservação e manejo de bacias hidrográficas. Belo Horizonte: Cemig - Companhia Energética de Minas Gerais doi: 10.17648/bacias-hidrograficas.

Cao, W., Hong, H., Zhang, Y., Yue, S., and Ding, Y. (2004). Nutrient export patterns from an agricultural catchment in southeast China. IAHS-AISH Publ., 336–342.

Carmo, F. F. do, Kamino, L. H. Y., Junior, R. T., Campos, I. C. de, Carmo, F. F. do, Silvino, G., et al. (2017). Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect. Ecol. Conserv. 15, 145–151. doi: 10.1016/j.pecon.2017.06.002.

Coelho, A. L. (2009). Bacia Hidrográfica do Rio Doce (MG / ES): Uma Análise Socioambiental. 131–146.

Coelho, F. E. A., Lopes, L. C., Cavalcante, R. M. S., Corrêa, G. C., and Leduc, A. O. H. C. (2019). Brazil unwisely gives pesticides a free pass. Science (80-. ). 365, 552 LP – 553. doi: 10.1126/science.aay3150.

Cohen, D. A. (2016). The rationed city: The politics of water, housing, and land use in drought-parched São Paulo. Public Cult. 28, 261–289. doi: 10.1215/08992363-3427451.

Cruz, M. A. S., Gonçalves, A. de A., de Aragão, R., de Amorim, J. R. A., da Mota, P. V. M., Srinivasan, V. S., et al. (2019). Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environ. Earth Sci. 78, 0. doi: 10.1007/s12665-019-8087-5.

Dala‐Corte, R. B., Melo, A. S., Siqueira, T., Bini, L. M., Martins, R. T., Cunico, A. M., et al. (2020). Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol., 1365-2664.13657. doi: 10.1111/1365-2664.13657.

Esther Carone, B., Rozely Ferreira, dos S., Sueli Aparecida, T., and Sidnei, R. (2016). Relações entre tipo de vizinhança e efeitos de borda em fragmento florestal. Ciência Florest. 552, 82–91.

Fernandes, G. W., Goulart, F. F., Ranieri, B. D., Coelho, M. S., Dales, K., Boesche, N., et al. (2016). Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat. Conserv. 14, 35–45. doi: https://doi.org/10.1016/j.ncon.2016.10.003.

Fiorott, T. H., and Zaneti, I. C. B. B. (2017). Tragédia do povo krenak pela morte do Rio Doce/Uatu, no desastre da Samarco/Vale/BHP, Brasil. Fronteiras 6, 127–146. doi: 10.21664/2238-8869.2017v6i2.p127-146.

Freitas, E. S. D. M., and Del Gaudio, R. S. (2015). Crise ecológica, escassez hídrica e ideologias: uma análise crítica da carta de 2070. Soc. e Nat. 27, 439–452. doi: 10.1590/1982-451320150306.

Gomes, L. E. de O., Correa, L. B., Sá, F., Neto, R. R., and Bernardino, A. F. (2017). The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar. Pollut. Bull. 120, 28–36. doi: 10.1016/j.marpolbul.2017.04.056.

Gonzales-Inca, C. A., Kalliola, R., Kirkkala, T., and Lepistö, A. (2015). Multiscale Landscape Pattern Affecting on Stream Water Quality in Agricultural Watershed, SW Finland. Water Resour. Manag. 29, 1669–1682. doi: 10.1007/s11269-014-0903-9.

Gotelli, N. ., and Ellinson, A. . (2013). A Primer of Ecological Statistics. 2nd ed. Sunderland, MA: Sinauer.

IGAM - Instituto Mineiro de Gestão das Águas (2019). Encarte Especial Sobre a Qualidade Das Águas Do Rio Doce Após 4 Anos Do Rompimento De Barragem De Fundão -2015/2019. Belo Horizonte, MG.

Li, K. et al. (2018). Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality. Ecol. Indic. 93, 741–752. doi: 10.1016/j.ecolind.2018.05.030.

Lima, H. S. (2016). Qualidade das águas superficiais da porção mineira da bacia do rio Doce e sua relação com aspectos socioambientais. Programa Pós-Graduação em Saneam. meio Ambient. e Recur. hídricos.

Maillard, P., and Santos, N. A. P. (2008). A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed--Brazil. J. Environ. Manage. 86, 158–70. doi: 10.1016/j.jenvman.2006.12.009.

Mapbiomas (2023). Coleções Mapbiomas: Coleção 7 (1985-2021) da Série Anual de Mapas de Uso e Cobertura da Terra do Brasil. Available at: http://mapbiomas.org.

Marzin, A., Verdonschot, P. F. M., and Pont, D. (2013). The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704, 375–388. doi: 10.1007/s10750-012-1254-2.

Mello, K. De, Taniwaki, R. H., Paula, F. R. de, Valente, R. A., Randhir, T. O., Macedo, D. R., et al. (2020). Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manage. 270, 110879. doi: 10.1016/j.jenvman.2020.110879.

Mello, K. de, Valente, R. A., Randhir, T. O., and Vettorazzi, C. A. (2018). Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecol. Indic. 93, 1293–1301. doi: 10.1016/j.ecolind.2018.06.030.

Mello, K., Taniwaki, R. H., Macedo, D. R., Leal, C. G., and Randhir, T. O. (2023). Biomonitoring for watershed protection from a multiscale land-use perspective. Diversity 15, 636. doi: 10.3390/d15050636.

Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T. P., et al. (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Chang. Biol. 24, 5895–5908. doi: 10.1111/gcb.14459.

Mori, G. B., De Paula, F. R., De Ferraz, S. F. B., Camargo, A. F. M., and Martinelli, L. A. (2015). Influence of landscape properties on stream water quality in agricultural catchments in Southeastern Brazil. Ann. Limnol. 51, 11–21. doi: 10.1051/limn/2014029.

Morley, S. A., and Karr, J. R. (2002). Assessing and restoring the health of urban streams in the Puget Sound basin. Conserv. Biol. 16, 1498–1509. doi: 10.1046/j.1523-1739.2002.01067.x.

Nascimento, H. E. M., and Laurance, W. F. (2006). Efeitos de área e de borda sobre a estrutura florestal em fragmentos de floresta de terra-firme após 13-17 anos de isolamento. Acta Amaz. 36, 183–192. doi: 10.1590/s0044-59672006000200008.

Nelson Mwaijengo, G., Msigwa, A., Njau, K. N., Brendonck, L., and Vanschoenwinkel, B. (2020). Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 715, 134825. doi: 10.1016/j.scitotenv.2019.134825.

Oliveira, B. R. de, Carvalho-Ribeiro, S. M., and Maia-Barbosa, P. M. (2020). A multiscale analysis of land use dynamics in the buffer zone of Rio Doce State Park, Minas Gerais, Brazil. J. Environ. Plan. Manag. 63, 935–957. doi: 10.1080/09640568.2019.1617681.

Oliveira, L. M. de (2016). Análise da Relação entre Uso do Solo e Liberação dos Nutrientes Fósforo e Nitrogênio nas Águas Superficiais do Rio das Velhas Utilizando Árvores de Decisão e Regressão Múltipla.

Oliveira, L. M., Maillard, P., and Andrade Pinto, E. J. (2017). Application of a land cover pollution index to model non-point pollution sources in a Brazilian watershed. Catena 150, 124–132. doi: 10.1016/j.catena.2016.11.015.

Omernik, J. M., Griffith, G. E., Hughes, R. M., Glover, J. B., and Weber, M. H. (2017). How Misapplication of the Hydrologic Unit Framework Diminishes the Meaning of Watersheds. Environ. Manage. 60, 1–11. doi: 10.1007/s00267-017-0854-z.

Penido, G., Ribeiro, V., and Fortunato, D. (2015). Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil. Brazilian J. Biol. 75, 347–351. doi: 10.1590/1519-6984.12813.

Pinheiro, T. M. M., Goulart, M. vinicius P. E. M. A., and Procópio, J. de C. (2019). Mar de Lama Da Samarco na Bacia do Rio Doce em Busca de Respostas. Belo Horizonte: Instituo Guaicuy.

Santos, J. P., Martins, I., Callisto, M., and Macedo, D. R. (2017). Relações entre qualidade da água e uso e cobertura do solo em múltiplas escalas espaciais nabacia do Rio Pandeiros, Minas Gerais. Rev. Espinhaço 6, 36–46. doi: 10.5281/zenodo.2575760.

Santos, N. A. P. (2005). Uma abordagem metodológica para determinar a influência do uso e da cobertura do solo como fonte de poluição difusa na alteração da qualidade da água na Bacia do Rio das Velhas.

SEDRU, S. de E. de D. R. (2016). Relatório: Avaliação dos efeitos e desdobramentos do rompimento da Barragem de Fundão em Mariana - MG. Belo Horizonte.

Shen, Z., Hou, X., Li, W., Aini, G., Chen, L., and Gong, Y. (2015). Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 48, 417–427. doi: 10.1016/j.ecolind.2014.08.019.

Sliva, L., and Dudley Williams, D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res. 35, 3462–3472. doi: 10.1016/S0043-1354(01)00062-8.

Stutter, M., Dawson, J. J. C., Glendell, M., Napier, F., Potts, J. M., Sample, J., et al. (2017). Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams. Sci. Total Environ. 607–608, 391–402. doi: 10.1016/j.scitotenv.2017.07.013.

Sun, Y., Guo, Q., Liu, J., and Wang, R. (2014). Scale Effects on Spatially Varying Relationships Between Urban Landscape Patterns and Water Quality. Environ. Manage. 54, 272–287. doi: 10.1007/s00267-014-0287-x.

Tanaka, M. O., Souza, A. L. T. de, Moschini, L. E., and Oliveira, A. K. de (2016). Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agric. Ecosyst. Environ. 216, 333–339. doi: 10.1016/j.agee.2015.10.016.

Thompson, F., de Oliveira, B. C., Cordeiro, M. C., Masi, B. P., Rangel, T. P., Paz, P., et al. (2020). Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci. Total Environ. 705, 135914. doi: 10.1016/j.scitotenv.2019.135914.

Tran, C. P., Bode, R. W., Smith, A. J., and Kleppel, G. S. (2010). Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol. Indic. 10, 727–733. doi: 10.1016/j.ecolind.2009.12.002.

Tromboni, F., and Dodds, W. K. (2017). Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones. Environ. Manage. 60, 30–40. doi: 10.1007/s00267-017-0858-8.

Turner, M. G., Gardner, R. H., and O’Neill, R. V. (2001). Landscape Ecology in Theory and Practice Pattern and Process Second Edition. New York, NY: Springer.

Uuemaa, E. (2007). Indicatory value of landscape metrics for river water quality and landscape pattern. 56.

Valle Júnior, R. F. do, Siqueira, H. E., Valera, C. A., Oliveira, C. F., Sanches Fernandes, L. F., Moura, J. P., et al. (2019). Diagnosis of degraded pastures using an improved NDVI-based remote sensing approach: An application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sens. Appl. Soc. Environ. 14, 20–33. doi: 10.1016/j.rsase.2019.02.001.

Xiao, R., Wang, G., Zhang, Q., and Zhang, Z. (2016). Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Sci. Rep. 6, 1–10. doi: 10.1038/srep25250.

Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P. (1989). AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 44, 168–173.

Published

2023-12-26

How to Cite

Santos, J. P. dos ., & Macedo, D. R. . (2023). Landscape influences on water quality composition and structure across multiple temporal and spatial scales in the hydrological unit of the Doce River in Minas Gerais. evista Espinhaço, 13(1). https://doi.org/10.5281/zenodo.10433182

Issue

Section

Artigos

Most read articles by the same author(s)