Uso do índice de vegetação na avaliação da dinâmica da vegetação e sua correlação com processos erosivos
DOI:
https://doi.org/10.5281/zenodo.14506788Palavras-chave:
Voçoroca, Landsat, Erosão linear, NDVIResumo
O Índice de Vegetação da Diferença Normalizada (NDVI) é utilizado para identificar as características biofísicas da vegetação. Neste sentido, o objetivo central do estudo foi avaliar as mudanças na vegetação de uma sub-bacia hidrográfica de Gouveia, Minas Gerais (anos 1984 e 2016). Evidências sugerem que a alteração na cobertura vegetacional local pode ter favorecido os processos erosivos na região. Foram utilizadas imagens Landsat 5-TM e 8-OLI num intervalo de 8 anos de 1984 a 2016. Os resultados foram divididos em quatro classes, de acordo com campanhas de campo realizadas: (i) Área não vegetada, (ii) Vegetação herbácea, (iii) Formação natural não florestal e (iv) Floresta. Foram levantadas e espacializadas as voçorocas ocorrentes na área de estudo, contabilizando 82 (em 1984) e 107 voçorocas (2016). As descobertas indicam crescimento em áreas com cobertura de vegetação herbácea e de áreas não vegetadas. O monitoramento da região pelo índice NDVI mostrou uma variação da vegetação nos anos estudados, com a intensificação do desenvolvimento de voçorocas, que demandam a implementação de técnicas mitigadoras de erosão na área de estudo.
Referências
Alam, N. M.; Jana, C.; Mandal, D. et al. (2022). Applying Analytic Hierarchy Process for identifying best management practices in erosion risk areas of northwestern Himalayas. Land, 11(6), p. 1-18. https://doi.org/10.3390/land11060832.
Alvares, C. A.; Stape, J. L.; Sentelhas, P. C. et al. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), p. 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Alves, M. A. B.; Souza, A. P.; Almeida, F. T. (2023). Effects of land use and cropping on soil erosion in agricultural frontier areas in the Cerrado-Amazon Ecotone, Brazil, using a rainfall simulator experiment. Sustainability, 15, 4954 p. https://doi.org/10.3390/su15064954.
Arabameri, A.; Cerda, A.; Rodrigo-Comino. J. et al. (2019). Proposing a novel predictive technique for gully erosion susceptibility mapping in arid and semi-arid regions (Iran). Remote Sensing. 11(21), 2577 p. https://doi.org/10.3390/rs11212577.
Aranha, P. R. A.; Augustin, C. H. R. R.; Elmiro, M. A. T. et al. (2023). GPR como ferramenta para estudo do controle estrutural do substrato rochoso no desenvolvimento de voçorocas: Gouveia, Espinhaço Meridional, MG, Brasil. Revista Brasileira de Geomorfologia, 24. https://doi.org/10.20502/rbgeomorfologia.v24i00.2323.
Asima, H.; Niedzinski, V., O’Donnell, F. C. et al. (2022). Comparison of vegetation types for prevention of erosion and shallow slope failure on steep slopes in the southeastern USA. Land, 11(10), p. 1739. https://doi.org/10.3390/land11101739.
Augustin, C. H. R. R.; Aranha, P. R. A. (2006). A ocorrência de voçorocas em Gouveia, MG: características e processos associados. Geonomos, 14(2), p. 75-86. https://doi.org/10.18285/geonomos.v14i2.112.
Augustin, C. H. R. R.; Fonseca, B. M.; Rocha, L. C. (2011). Mapeamento geomorfológico da Serra do Espinhaço Meridional: primeira aproximação. Geonomos, 19(2), p. 50-69. https://doi.org/10.18285/geonomos.v19i2.41.
Avand, M.; Janizadeh, S.; Naghibi, S. A. et al. (2019). A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11(10), p. 2076. https://doi.org/10.3390/w11102076.
Benaiche, M.; Mokhtari, E.; Berghout, A. et al. Identification of soil erosion-susceptible areas using revised universal soil loss equation, analytical hierarchy process and the fuzzy logic approach in sub-watersheds Boussellam and K’sob Algeria. Environmental Earth
Sciences, 83(34). https://doi.org/10.1007/s12665-023-11339-7.
Chen, Y.; Jiao, J.; Yan, X. et al. (2024). Response of gully morphology and density to the spatial and rainy-season monthly variation of rainfall at the regional scale of the Chinese Loess Plateau. Catena, 236, p. 107773. https://doi.org/10.1016/j.catena.2023.107773.
ESRI. Environmental Systems Research Institute. (2013). ArcGIS 10.0: GIS by ESRI.
FAO. Food and Agriculture Organization of the United Nations. (2019). Soil erosion: the greatest challenge for sustainable soil management. Rome.
Fetzel, T.; Petridis, P.; Noll, D. et al. (2018). Reaching a socio-ecological tipping point: Overgrazing on the Greek island of Samothraki and the role of European agricultural policies. Land Use Policy, 76, p. 21-28. https://doi.org/10.1016/j.landusepol.2018.04.042.
França, L. C.; Mucida, D. P.; Morais, M. S. et al. (2018). Delimitação automática e quantificação das Áreas de Preservação Permanente de encosta para o município de Diamantina, Minas Gerais, Brasil. Revista Espinhaço. https://doi.org/10.5281/zenodo.3952853.
Guerra, A. J. T.; Bezerra, J. F. R.; Jorge, M. D. C. O. (2023). Recuperação de voçorocas e de áreas degradadas, no Brasil e no mundo-estudo de caso da voçoroca do Sacavém-São Luís–MA. Revista Brasileira de Geomorfologia, 24. http://dx.doi.org/10.20502/rbg.v24i00.2306.
Guerra, A. J. T.; Fullen, M. A.; Bezerra, J. F. R.; Jorge, M. C. O. 2018). Gully Erosion and Land Degradation in Brazil: A Case Study from São Luís Municipality, Maranhão State. Ravine Lands: Greening for Livelihood and Environmental Security, p. 195-216. https://doi.org/10.1007/978-981-10-8043-2_8.
Hayas, A.; Poesen, J.; Vanwalleghem, T. (2017). Rainfall and Vegetation Effects on Temporal Variation of Topographic Thresholds for Gully Initiation in Mediterranean Cropland and Olive Groves. Land Degradation and Development, 28(8), p. 2540-2552. https://doi.org/10.1002/ldr.2805.
Helman, D. (2017). Science of the Total Environment Land surface phenology: What do we really ‘see’ from space? Science of the Total Environment, 618, p. 665-673. https://doi.org/10.1016/j.scitotenv.2017.07.237.
Huemmrich, K. F.; Zesati, S. V.; Campbell, P. et al. (2021). Canopy reflectance models illustrate varying NDVI responses to change in high latitude ecosystems. Ecological Applications, 31(8), e02435. https://doi.org/10.1002/eap.2435.
INPE. Instituto Nacional de Pesquisas Espaciais. (sd). Imagens de satélites.
Keesstra, S. D.; Rodrigo-Comino, J.; Novara, A. et al. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 174, p. 95-103. https://doi.org/10.1016/j.catena.2018.11.00.
Leão, M. R.; Rezende, É. A., Augusto, A.; Salgado, R. (2012). Erosão, Denudação E Evolução Do Relevo Da Média Serra Do Espinhaço Meridional, Minas Gerais. Revista Brasileira de Geomorfologia, 13(2), p. 113-124. https://doi.org/http://dx.doi.org/10.20502/rbg.v13i2.369.
Manfreda, S.; Mccabe, M. F.; Miller, P. E.; Lucas, R.; Madrigal, V. P.; Mallinis, G.; Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10, p. 1-28, 2018. https://doi.org/10.3390/rs10040641.
Mathias, D. T.; Lupinacci, C. M.; Nunes, J. O. R. (2020). Identificação dos fluxos de escoamento superficial em área de relevo tecnogênico a partir do uso de modelos hidrológicos em SIG. Sociedade & Natureza, 32, p. 772-783. https://doi.org/10.14393/SN-v32-2020-49431.
Nunes, A. N.; Gonçalves, J. P.; Figueiredo, A. (2023). Soil erosion in extensive versus intensive land uses in areas sensitive to desertification: A case study in Beira Baixa, Portugal. Land, 12(8), p. 1591. https://doi.org/10.3390/land12081591.
Phinzi, K.; Holb, I.; Szabó, S. (2021). Mapping permanent gullies in an agricultural area using satellite images: efficacy of machine learning algorithms. Agronomy, 11(2), p. 333. https://doi.org/10.3390/agronomy11020333.
Qian, C.; Shao, L.; Hou, X. et al. (2019). Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. Catena, 183, p. 104182. https://doi.org/10.1016/j.catena.2019.104182.
Quandt, A.; Neufeldt, H.; Gorman, K. (2023). Climate change adaptation through agroforestry: opportunities and gaps. Current Opinion in Environmental Sustainability, 60, p. 101244. https://doi.org/10.1016/j.cosust.2022.101244.
Ribeiro, J. C.; Tocantins, N.; Salomão, F. X. S. (2023). Abordagem morfopedológica aplicada à prevenção de voçorocas: Estudo de caso na bacia do Rio Itiquira-Alto Pantanal-Mato Grosso. Revista Brasileira de Geomorfologia, 24. https://doi.org/10.20502/rbgeomorfologia.v24i00.2349.
Rodrigo-Comino, J.; Fernández, J. J. P.; Cerdà, A. (2023). Soil erosion triggered by the archeological excavation and conservation of trenches. The case of “Cerro de las Trincheras” in Bailén (Jaén, Spain): An open discussion. Cuadernos de Investigación Geográfica, 49( 2), p. 163-171. https://doi.org/10.18172/cig.5746.
Romero-Ruiz, A.; Monaghan, R.; Milne, A. et al. (2023). Modelling changes in soil structure caused by livestock treading. Geoderma, 431, p. 116331. https://doi-org.ez36.periodicos.capes.gov.br/10.1016/j.geoderma.2023.116331.
Rouse, J. W.; Haas, R. H.; Schell, J. A.; Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Earth Resources Technology Satellite-1 Symposium, 3, Washington. NASA, 1, p. 309-317. Whashington DC.
Sandeep, P.; Reddy, G.P.O.; Jegankumar, R.; Arun Kumar, K.C. (2021). Modeling and assessment of land degradation vulnerability in semi-arid ecosystem of southern India using temporal satellite data, AHP and GIS. Environmental Modeling & Assessment, 26(2), p 143-154. https://doi.org/10.1007/s10666-020-09739-1.
Santos, R. L.; Nunes, F. G. (2019). Análise do uso da terra em uma secção às margens do rio Tocantins auxiliada por índice de vegetação por diferença normalizada–NDVI. InterEspaço: Revista de Geografia e Interdisciplinaridade, 5(18), p. e9379. https://doi.org/10.18764/2446-6549.2019.9379.
Selkimäki, M.; González-Olabarria, J. R. Assessing Gully Erosion Occurrence in Forest Lands in Catalonia (Spain). Land Degradation and Development, 28(2), p. 616-627. https://doi.org/10.1002/ldr.2533.
Silveira, E. M. O.; Acerbi Júnior, F. W.; Silva, S. T.; Mello, J. M. (2019). Anthropogenic Disturbances Affect the Relationship Between Spectral Indices and the Biometric Variables of Brazilian Savannas. Floresta e Ambiente, 26(3). https://doi.org/10.1590/2179-8087.033818.
Tichavský, Radek et al. Aumento da atividade das voçorocas induzida por intervenções humanas de curto prazo – Pesquisa dendrogeomórfica baseada em raízes de árvores expostas. Geografia aplicada, 98, p. 66-77. https://doi.org/10.1016/j.apgeog.2018.07.008.
Thwaites, R. N.; Brooks, A. P.; Pietsch, T. J. et al. (2022). What type of gully is that? The need for a classification of gullies. Earth Surface Processes and Landforms, 47(1), p. 109-128. https://doi.org/10.1002/esp.5291.
Vanmaercke, M.; Poesen, J.; Van Mele, B.; et al. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, p. 336-355. https://doi.org/10.1016/j.earscirev.2016.01.009.
Wang, Z.; Guanghui, Z.; Chengshu, W.; Shukun, X. (2022). Assessment of the gully erosion susceptibility using three hybrid models in one small watershed on the Loess Plateau, Soil and Tillage Research, 223, p. 105481. https://doi.org/10.1016/j.still.2022.105481.
Wilkinson, S. N.; Kinsey-Henderson, A. E.; Hawdon, A. A.; Hairsine, P. B.; Bartley, R.; Baker, B. (2018). Grazing impacts on gully dynamics indicate approaches for gully erosion control in northeast Australia. Earth Surface Processes and Landforms, 43(8), p. 1711-1725, 2018. https://doi.org/10.1002/esp.4339.
Winkelried, J.; Ruf, C.; Gleason, S. (2023). Propriedades espaciais e temporais de amostragem de uma grande constelação de satélites gnss-r. Sensoriamento Remoto, 15(2), p. 333. https://doi.org/10.3390/rs15020333.
Wu, Q.; Liu, K.; Song, C. et al. (2018). Remote sensing detection of vegetation and landform damages by coal mining on the Tibetan Plateau. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10113851.
Yang, F.; Sun L.; Wang J. (2023). Monthly variation and correlation analysis of global temperature and wind resources under climate change. Energy Conversion and Management, 285, p. 116992. https://doi.org/10.1016/j.enconman.2023.116992.
Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N. et al. (2019). Analysis of long-term gully dynamics in different agro-ecology settings. Catena, 179, p. 160-174. https://doi.org/10.1016/j.catena.2019.04.013.
Yu, Y.; Zhu, R.; Liu, D. et al. (2023). Understanding the balance between soil conservation and soil water storage capacity during the process of vegetation restoration in semi‐arid watersheds in the Loess Plateau, China. Land Degradation & Development, 34(18), p. 5805-5815. https://doi.org/10.1002/ldr.4878.
Zhou, M.; Li, D.; Liao, K.; & Lu, D. (2023). Integration of Landsat time-series vegetation indices improves consistency of change detection. International Journal of Digital Earth, 16(1), p. 1276-1299. https://doi.org/10.1080/17538947.2023.2200040.
Zhu, R.; Yu, Y.; Zhao, J. et al. (2023). Evaluating the applicability of the water erosion prediction project (WEPP) model to runoff and soil loss of sandstone reliefs in the Loess Plateau, China. International Soil and Water Conservation Research, 11(2), p. 240-250. https://doi.org/10.1016/j.iswcr.2023.01.003.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Espinhaço
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.